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Abstract

Connected Vehicles are expected to provide a major improvement in road safety. By

broadcasting Basic Safety Messages (BSM) using Dedicated Short Range Communica-

tions (DSRC) all connected vehicles will have situational awareness of other connected

vehicles in the area near them, and capability to provide ample warning of impending col-

lisions. These systems rely on highly accurate GPS location data.

GPS by design expects a clear line of sight (LoS) to four or more satellites for accu-

racy. City roads are often surrounded by buildings. These structures create areas isolated

from sky views. Intelligent Transportation System (ITS) researchers have called these areas

“urban canyons”. Buildings may block and/or bounce satellite signals, which can cause

receivers to ‘see’ these signals either directly, indirectly, or both direct and indirect signals

at the same time—which is the so-called multipath problem.

Driving test results have been published which demonstrate the challenge. ITS researchers

have noticed that position data taken by on-board units (OBU’s) contain these anoma-

lies. When analyzed, these plots show vehicles as if they were driving through build-

ings. This is not helpful in preventing collisions. I will show that there is a data based

approach to identify when Global Navigational Satellite System (GNSS) receivers are iden-

tifying impossible position results. I will also show a method using other available CAN

bus data to interpolate expected geographic location and eliminate sending erroneous posi-

tion reports.

iv Abstract
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GSM Groupe Spécial Mobile (now Global System for Mobile)

ETSI Std for 2G cellular data communications
max power 2W in 850/900, 1W in 1800/1900

GSV GPS Satellites in View

HMI Human Machine Interface
HSM Hardware Security Module

HSPA High Speed Packet Access

E - F - G - H xvi Terms of Reference

https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/European_Geostationary_Navigation_Overlay_Service
https://en.wikipedia.org/wiki/Equivalent_isotropically_radiated_power
http://www.etsi.org
http://www.consumerreports.org/cro/cars/types/exterior-and-cargo-comparison.htm
https://www.fcc.gov
https://en.wikipedia.org/wiki/Field-programmable-gate-array
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas
http://en.wikipedia.org/wiki/General_Packet_Radio_Service
http://www.gsa.europa.eu/
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/High_Speed_Packet_Access


www.manaraa.com

ICI Intelligent Car Initiative
EC policy framework for connected vehicles

IEEE 802.11p Wireless Access in Vehicular Environment
IMU Inertial Measurement Unit

International IEEE 1609 for U.S. operation at 5.9 GHz
Standards ETSI TC-ITS for European use at 5.9 GHz

ARIB STD-T109 Japanese standard at 760 MHz
ITS Intelligent Transportation System [2]
ITU International Telecommunication Union

UN agency sets frequency allocation standards

KF Kalman Filter

LAAS Local Area Augmentation System
Local ground reference to improve GPS accuracy

LBS Location-Based Service
LOS Line of Sight (Satellites in View)

LWD Low Water Datum

MANET Mobile Ad hoc Network
MSAS Multi-functional Satellite Augmentation System

Japanese system to improve GPS accuracy

NLOS Non-line of Sight
NMEA National Marine Electronics Association

NTIA National Telecommunication and Information Administration
control spectrum allocation in US

NoW Network on Wheels (Europe)

I - K - L - M - N xvii Terms of Reference

https://en.wikipedia.org/wiki/Intelligent_Car_Initiative
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/stamp/stamp.jsp?tp=&arnumber=4526014
https://en.wikipedia.org/wiki/Inertial_measurement_unit
http://www.itu.int/en/about/Pages/default.aspx
http://waas.stanford.edu/research/laas.htm
http://en.wikipedia.org/wiki/Multi-functional_Satellite_Augmentation_System
http://www.ntia.doc.gov/about


www.manaraa.com

OBD On-board Diagnostics
OBU On Board Unit

PNT Positioning, Navigation and Timing
PRN Pseudo-Random Noise

practical use is satellite ID number
PVT Position, Velocity, Time, used in satellite measurements
P/Y L2 Precision Encrypted GPS signal (in GNSS)

RTTT Road Transport and Traffic Telematics
European standards

RSA Rivest, Shamir, Adleman (public key encryption)
RSSI received signal strength indicator
RSU Road Side Unit

SEVECOM Secure Vehicular Communication (Europe)
SHRP 2 Second Strategic Highway Research Program

United States National Research Council
Transportation Safety Board

SLAM Simultaneous localization and mapping [3]
SPaT Signal Phasing and Timing

TEC Total Electron Count (solar flares increase ionospheric scintillation)
TESLA Timed Efficient Stream Loss-tolerant Authentication

RFC 4082 RFC 4383 RFC 4442
TAI Temps atomique international

International Atomic Time
TCXO Temperature Compensated Crystal Oscillators

TOA Time of Arrival (helps define receiver distance from satellite)

TOW Time of Week aka Z-count (satellite signal transmission)
TPEG Transport Protocol Experts Group
TPM Trusted Platform Module

O - P - R - S - T xviii Terms of Reference

https://en.wikipedia.org/wiki/On-board_diagnostics
http://en.wikipedia.org/wiki/Received_signal_strength_indication
http://www.aradasystems.com/locomate-rsu/
http://www.its.dot.gov/research/pdf/SPaT_recommendations.pdf
http://datatracker.ietf.org/doc/rfc4082/
http://datatracker.ietf.org/doc/rfc4383/
http://datatracker.ietf.org/doc/rfc4442/
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/TPEG
https://en.wikipedia.org/wiki/Trusted_Platform_Module


www.manaraa.com

UC Urban Canyon
UMTRI University of Michigan Transportation Research Institute

UTM Universal Transverse Mercator coordinate system
UWB Ultra Wide Band

FCC defines as any signal which has an absolute bandwidth larger than 500 MHz

V2I Vehicle to infrastructure
V2V Vehicle to vehicle

VANET Vehicular Ad hoc Network
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

VII Vehicle Infrastructure Integration (US DOT)
which became Intellidrive

VIIC Vehicle Infrastructure Integration Consortium
Ford, BMW, Chrysler, GM, Honda, Daimler,
Nissan, Toyota and VW-Audi

WAVE Wireless Access in Vehicular Environments (IEEE 802.11p)
WAAS Wide Area Augmentation System

monitors GPS constellation to certify integrity
WBSS WAVE basic service set

WGS-84 World Geodetic System basis for GPS
Wi-Fi Wi-Fi Alliance

of products certified to work within IEEE 802.11
WiGLE WiFi Geographic Logging Engine

Wireless hotspot registry
WSIE WAVE service information element

WSMP WAVE Short Message Protocol

U - V - W xix Terms of Reference

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/VHSIC
http://waas.stanford.edu/research/waas.htm
https://en.wikipedia.org/wiki/World_Geodetic_System
http://www.wi-fi.org/who-we-are/member-companies
https://en.wikipedia.org/wiki/WiGLE


www.manaraa.com

Introduction

1.1 The Scope Of The Thesis

The Intelligent Transportation System (ITS) [2] attempts to solve the issue of public safety

by warning drivers of impending collisions, providing sufficient time for accident avoid-

ance. Notification of impending danger will prevent many accidents, injuries and fatali-

ties. US DOT (Department of Transport) [4] researchers preliminary statistics show that

up to 70% of these non-impaired accidents can be prevented. High accuracy position ref-

erences are required for this system to function. Global Positioning System (GPS) signals

are available and highly accurate, although signal problems can cause errors [5–13]. Line

of sight (LoS) view from several satellites to the receiver is essential. Urban areas with

roads adjacent to very tall buildings suffer from poor LoS required by GPS receivers. A

connected vehicle testbed was built for the ITS World Congress 2014 in Detroit, using

ARADA Road Side Units (RSU) [14]. We have arranged with US DOT and the University

of Windsor Office of Research (ORIS) to collaborate in research, and obtained access to

this US DOT testbed. (The agreement is for a term of three years and concludes in April

2018.) Using ITS data collected by DSRC on-board units (OBU’s) on the Detroit testbed,

I will present a proposal to demonstrate a method to improve accuracy of individual vehicle

position information.

1.2 Importance of this Research Topic

Many researchers have identified the so called ‘Urban Canyon’ problem. [5, 6, 10–12, 15–

18] The issues are not trivial to solve, with reflected signals causing many calculated

positions to appear as if we are driving through buildings. Antenna systems for vehicles

1
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are now fairly standardized, and they are compact enough to not be obtrusive, yet sufficient

to provide adequate real world performance. The signals from satellite to receiver can

follow three distinct pathways; 1) direct ‘Line of Sight’ (LoS) and 2) indirect (meaning

non-LoS) or 3) both LoS and non-LoS at the same time, causing the so called ‘Multi-Path’

problem — which leads to wild position inaccuracy. [5, 6, 17]

Antennas have been designed that are capable of reducing errant signals by an or-

der of magnitude. [11] Connected Vehicles (CV) have tiny (typically 35mm square by less

than 12mm thick) antennas, positioned for good sky view by the rear view mirror. Choke

plate and beam forming antennas are typically 1m in size and therefore unsuitable for CV

applications.

Eminent researchers working with Global Navigational Satellite Systems (GNSS)

have designed elaborate strategies [10, 11, 18] to combat these issues with expensive spe-

cialized equipment. For example, a ‘3-D shadow mapped database’ of the building terrain

in a specific area of London, UK, was demonstrated to assist in determining which satellites

to ‘score lower’ in probability, which has been shown to significantly improve cross street

position accuracy. Android smartphones were discussed at the ITS 2014 World Congress,

most highly considered by the EU community, but not considered ‘mainstream’ in North

America or Asia—mostly due to higher adoption of other personal mobile devices outside

of Europe. It is not realistic to me that we will see elaborate 3-D databases on connected

vehicles in the near term.

1.3 Problem Statement

Satellite receivers expect clear line of sight to accurately determine GPS position. These

receivers are intended to be light weight and low power units, which works well in most

use cases. GNSS systems are designed to provide orbital (ephemeris) details and have the

(relatively) less complex timing signal processing done by compact receivers. Ephemeris

is an historic term used to describe a table of orbital data. Mariners typically carried and

used these tables to determine their current position. GPS techniques still rely on this type

of data, and electronically provide updated ephemeris details (including clock correction)

2 Introduction
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dynamically through their carrier signals. Aircraft and most open water marine uses do

not encounter satellite obstructed views. Only in natural or urban canyons do we lose

sight of many satellites, and therefore notice these wild position reporting issues.

Vehicles leaving any parking structure or tunnel will take some time to acquire

satellite signals, typically five to twenty seconds, sometimes significantly longer. GNSS

receivers calculate their position based on the known ephemeris data, and the timing signals

received. Ephemeris data must be interpreted and loaded into the receiver for all satellites

in range. Only once the receiver knows where the satellites are can it then determine where

it’s own position is relative to these known satellite positions. Potentially up to 13 satellite

orbital paths and timing signals need to be processed, and signals interpreted. These

signals can commonly take well over a minute to initialize the receiver before position can

be determined.

A minimum of four satellites is required to solve the geometry for location. These

non-trivial calculations are complex enough that significant human time (several seconds)

can elapse before a position fix is reported. In a steady state of motion, position can be

predicted well enough, but acceleration and deceleration pose difficulties and significant

lag times occur due to solving these complex equations. Various physical system and

environmental errors also can occur which will alter transmission of satellite signals. [19]

My work is not directly concerned with these environmental issues, rather I’ve

focused on the following specific signal path issues. Three situations are considered for

satellite to receiver geometry: i) direct line of sight, ii) non-LoS bounced signals which

extend the apparent distance from a satellite, and iii) receiving both the direct and reflected

signals, known colloquially as the ‘Multi-path’ problem, greatly throwing off the ability to

accurately make a valid position calculation.

3 Introduction
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Figure 1.1: Satellite signal paths

Bounced non-LoS signals shown in orange/red
Direct LoS signal shown in black
diagram from http://www.rohde-schwarz.fr

Figure 1.2: Choke Ring Dual Polar-
ization Antenna

http://www.insight-gnss.org/WPs figures/

ChockRingDualPolAnt.png (image source)

1.4 Solution Outline

Anomalous position reports will render collision avoidance systems useless. After a

preliminary review of the published literature, it became apparent that a method to provide

on-board calculation of potential GPS position error was required. Vehicles will neither

have a large 3-D shadow mapped database on-board in the near term, nor on-board physics

labs. A data-driven solution is required, making use of the available OBU processors and

handling error detection and correction.

Kalman-Busy filters were adopted by the navigation community in the early

1960’s, when Rudy Kálmán presented the technique to engineers at NASA Ames Research

Center who were working to solve telemetry and control system gaps. [20] Noisy trans-

missions and particularly transmission gaps were causing them trouble reading telemetry

and providing control data. Kalman’s filter technique was successfully used to help with

Apollo missions. Later application to RADAR systems and other guidance and control

4 Introduction
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systems has left the Kalman filter as the leading choice for navigation system calcula-

tions. [3, 21–26]

Our intent is to design a solution to be implemented programatically, as a proof

of concept, for application on current vehicles working with current DSRC equipment on-

board. Preliminary data examination will be done using a commercial Garmin nüvi 2798

GPS, with data gathered while driving on the Detroit DSRC testbed. This was done to

demonstrate the issue and provide insight into mapping the results. True DSRC testbed

data was also gathered, with recorded results from ARADA On-Board Units (OBU’s) [42]

and including the integrated CAN Bus sensors, inertial measurement unit (IMU) and GPS

position results. The majority of the research centred on this DSRC testbed data. The

main proposal is a method for detection of the anomalous position, creating thresholds

to interpret errors, and also exploring use of a Kalman-Busy filter in python as proof of

concept for a path smoothing solution implementation.

1.5 The Structure Of The Thesis

For this thesis §1 covers the Introduction, §2 discusses Background Information with

features of Connected Vehicles, Urban Canyons and Satellite Navigation as well as a Liter-

ature Review, §3 discusses my Research Methodology for Indentifying & Mitigating GPS

Anomalies including Data Acquisition and Data Analysis. §4 provides Experiment Re-

sults and insight into my Proposed Solutions. Closing remarks in §5 offer Conclusions

including areas for Future Work. Each chapter will close with four diamonds on the far

right. v
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Background Information

2.1 Connected Vehicles

2.1.1 Why are Connected Vehicles Important?

World Health Organization (WHO) reports statistics on automobile related deaths. Their

”GLOBAL REPORT ON TRAFFIC SAFETY” [27] numbers are astounding—1.24 Mil-

lion deaths per year, or nearly 3400 deaths daily. This is a staggering number, and in-

cludes drivers, occupants and pedestrians. Table 2.1 shows annual Road Safety statistics

for Canada, and the countries developing GNSS systems.

Table 2.1: WHO 2013 Global Status Report on Road Safety

Country Population Road Death Rate per
Fatalities 100,000 pop.

Canada 34 016 594 2 296 6.8
US 310 383 968 35 490 11.4
Russia 142 958 156 26 567 18.6
China 1 348 932 032 275 983 20.5
India 1 224 614 272 231 027 18.9
Europe 496 465 562 36 144 7.3

European totals include: Belguim, Czech Rep., France, Germany, Greece, Hungary, Italy,
Netherlands, Poland, Portugal, Romania, Spain, Switzerland, United Kingdom, Ukraine [27]

Developing a method to reduce this very large number of fatalities would be a great benefit

to society. The loss of life, and the economic costs are measured by country in per-

centage of each countries GDP. Developing a technical solution for reducing fatalities

remains a principal motivation of the Connected Vehicle initiatives. IEEE have developed

specifications and standards to allow vehicles to communicate using a modified version of

WiFi. IEEE 802.11p standards outline ”Wireless Access in a Vehicular Environment”.

6
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Figure 2.1: US DSRC protocol stack layered communication architecture
from ”Dedicated Short-Range Communications (DSRC) Standards in the United States”, John Kenney, 2011 [28]

2.1.2 DSRC/WAVE

“Dedicated Short-Range Communication” (DSRC) [28,29] was developed at the same time

in North America and Europe. The FCC allocation of 75MHz of bandwidth in the 5.9

Ghz range to allow safety communications for the Intelligent Transportation System was

formalized in the 2004 “Report and Order FCC-03-324” for the US. European rules were

deployed in 2009 through CEN and ETSI. These rules define the frequency space for ITS

operations. DSRC is specifically the term used to describe the technology for various

Connected Vehicle communications, including the mandated 5.9 Ghz frequency band.

7 Connected Vehicles



www.manaraa.com

“Wireless Access in a Vehicular Environment” (WAVE) 802.11p is an amend-

ment to the IEEE 802.11 specification standard. Traditional 802.11 wireless connections

required involved relatively slow handshakes and negotiation—this is not possible in ITS

applications due to the transitory nature of the connections. Vehicle speed and chang-

ing positions of nodes in the Vehicular Ad-Hoc Network (VANET) do not allow stable

connections to be established for a long period of time. WAVE was envisioned as ‘con-

nectionless’, and there are extended standards in IEEE 1609 for security (.2), Network and

Sub-Layers WSMP (.3), MAC Sublayer Extension (.4)

It was interesting to discover at the 2014 ITS World Congress that standards

around the world for ITS vary greatly. Spectrum allocation for WAVE services in Japan

are only available in the 700MHz range, due to previous use of the 5.9 GHz space for toll

collection. 15 Million vehicles in Japan use this toll collection, it would now be nearly

impossible to transition these vehicles into the 5.9 GHz band. While the Europeans

standards (through ETSI) are using 5.9 GHz, they have other incumbents in their frequency

space and are only able to offer three available channels for DSRC/WAVE. Several in-

dependent European standards groups have convened regarding different facets of WAVE

communications. These groups are not in agreement with each other, and that fact makes

implementation a bit more interesting. In North America we have seven channels avail-

able for DSRC/WAVE—yet the BSM (basic safety message transmissions) are all sharing

one common channel (channel 172).

Table 2.2: World DSRC Frequency Allocations
Region Start Channel End Channels

Frequency Width Frequency Available

USA 5.850 GHz 10 MHz 5.925 GHz 7
Channels 172,174,176,178,180,182,184

EU 5.795 GHz 10 Mhz 5.815 GHz 3
5.795-5.805

Japan 700 MHz 10 Mhz x

8 Connected Vehicles
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2.1.3 Frequency Allocation

US DSRC Frequency Allocations have been established using channel numbers as follows:

Figure 2.2: US DSRC Channel Assignments
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.865 .885 .905

.875

channel center frequency

The proposed one 40 MHz and two 20 MHz channels are actually created by

combining the underlying channels, i.e. Channel 175 uses the full bandwidth of four

10MHz channels 172 through 178. Similarly Channels 173,177, and 181 combine the

smaller channels.
Table 2.3: US DSRC Frequency Allocation

Frequency Channel Application Start End
Center

5.8525 170 Reserved 5 MHz 5.850 5.855
5.860 172 Collision Avoidance 5.855 5.865

Critical Safety of Life
5.870 174 Service 5.865 5.875
5.880 176 Service 5.875 5.885
5.890 178 Control Channel & 5.885 5.895

Service Announcement
5.900 180 Service 5.895 5.905
5.910 182 Service 5.905 5.915
5.920 184 High Power Public Safety 5.915 5.925

Proposed three 20MHz Channels 171,177,181
5.865 173 Control Channel 5.865 5.885
5.885 177 Control Channel 5.885 5.905
5.905 181 Service 5.905 5.925

Proposed one 40MHz Channel 175
5.865 175 Control Channel 5.865 5.905
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(a) Looking East at Larned-Shelby (b) Looking West at Congress-Bates

Figure 2.3: Detroit DSRC Urban Canyon photos taken by the author (October 18, 2014)

2.2 Urban Canyon

2.2.1 What is the Urban Canyon?

Blocked or mis-directed GPS signals can easily be disrupted, leading to inaccurately calcu-

lated position. Tall buildings line most urban streets, creating limited sight lines to over-

head sky, and effectively blocking a majority of satellite signals from direct LoS to a street

level receiver. Areas that are blocked are considered to be in GNSS shadow [10,12]. Sig-

nals coming along the direction of travel are fine—yet signals along the cross-streets are

required for accuracy and only available in short bursts, which further complicates receiver

processing.

The “Urban Canyon” has become a well known problem in GNSS research

[10, 12, 15, 17, 30, 31]. Non-line of sight (nLoS) signals are only part of the prob-

lem. Some signals may be received both directly (LoS) and indirectly (nLoS) at almost

the same time—which is the so-called ‘Multi-Path’ problem. These multipath signals give

the receiver further conflicting data.

10 Urban Canyon
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2.3 Satellite Information

2.3.1 Why use Satellites?

Ground based navigational references run into many problems. An observer looking out

at 1.8m above sea-level can only detect features within roughly 11 km. This can be much

reduced due to atmospheric conditions. Line of sight is better when taller landmarks are

available yet the earth’s curvature is a significant barrier to maritime navigation. Loran and

other radio based systems were devised, and still cover much of the coastal areas. Other

signal propagation issues that made these great for marine operations made them sluggish

and inconsistent for aviation use. Inertial navigation systems are still widely used today

yet they remain complex and expensive. Military operations demanded higher precision

and led to the always visible Global Navigational Satellite System (GNSS) [1] concept.

2.3.2 Satellite Frequency Allocation

The United Nations advocates co-operation between member countries on many matters.

Their initiative to align radio frequency use is the International Telecommunication Union

(ITU). World Radiocommunications Conferences (WRC) are convened regularly every

three to four years by the ITU—most recently during November 2015 in Geneva, Switzer-

land. Inside each country allocations are controlled by their respective government agen-

cies. Industry Canada allocates frequencies here and for the USA it’s their National

Telecommunication and Information Administration (NTIA). The general public are more

familiar with the regulatory agencies. Regulations and enforcement are undertaken by the

CRTC in Canada, and the FCC in the USA.

A Satellite frequency overview is detailed in Table 2.4 below, showing current

in use GNSS frequencies. Table 2.5 provides an overview of various GNSS systems in

operation. GNSS data has been compiled from many sources.

11 Satellite Information
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Table 2.4: Satellite frequency overview
L1 1575.42 MHz Course-Acquisition (C/A) and encrypted precision (P(Y)) codes, with

L1 civilian (L1C) and military (M) codes on future Block III satellites.
L2 1227.60 MHz P(Y) code, with L2C and military codes on the Block IIR-M and newer

satellites.
L3 1381.05 MHz Nuclear detonation (NUDET) detection.
L4 1379.913 MHz Used to study ionospheric correction.
L5 1176.45 MHz Proposed for civilian safety-of-life (SoL) signals.

source: Wikipedia - GPS

Table 2.5: Global Navigation Satellite Systems
Launch Coun- Project in Region Frequencies
FullOp try Orbit Covered

1978-
1993

USA GPS (Global
Positioning
Satellite)

27 global L1 - 1575.42 MHz L2 - 1227.60 MHz

1982 Russia GLONASS 24 global FDMA
(Globalnaya L1 1602 + nx0.5625 MHz
navigatsionnaya L2 1246 + nx0.4375 MHz
sputnikovaya n = -7 through +6
sistema) CDMA

1600.995 MHz 1248.06 MHz 1202.25
MHz
Interoperable CDMA (2025 planned)
1575.42 MHz 1207.14 MHz 1176.45
MHz

2002 China Beidou-1 12 Asia —
(Big Dipper) Australia

2011 EU Galileo 8 Europe
2015
2007 China COMPASS 35 global

or BeiDou-2
2013 India IRNSS 7 India L5 (1176.45 MHz)

Region S band (2492.028 MHz)
GNSS satellite information compiled from numerous sources
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2.3.3 Position Determination

Navigation on land or sea requires that a magnetic bearing is taken (a compass angle from

a reference point) usually from the navigators present position to whatever intermediate

‘waypoint’ they are intending to end up reaching. This bearing is known as the ‘heading’

and will represent the direction of travel. Orienteering practise is that these short naviga-

tion ‘legs’ are used and that direction will fluidly change as terrain requires, with the goal

of reaching the next waypoint. The objective should be to change the general intermediate

‘heading’ to reach the next waypoint. Determining a new ‘heading’ either at the next

waypoint or through pre-planning will allow the navigator to reach their destination.

Triangulation

In a standard euclidean 2-dimensional space, when given three non-collinear points, a tri-

angle can be constructed using the points as vertices. By definition the sum of interior

angles will be 180◦ and standard trigonometry will apply. The known distance ab and

known angle α allow a quick calculation of sin(α), which is the distance perpendicularly

from the line ab to point c.

And so given two known positions, with exact distances between these, and the

reference angles from these to a third point, you can determine the exact location using

trigonometry (literally “triangle measure”). (See Triangulation Figure 2.4). Determining

a map position of any object using a two dimensional map can be accomplished through

this concept of triangulation.

Figure 2.4: Triangulation Triangulation (Figure 2.4): given these two
known points a and b combined with known
angles α and β referenced from the line ab
to our unknown point c, we can geometri-
cally complete the triangle. This allows
precise determination of an intersection at
the third (remote) point c.
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Trilateration

In 2-dimensions, measuring a bearing from two reference points (for instance on a lakeshore)

allows a mariner to plot two lines on a map, where the intersection of those lines will

pinpoint their present position. This can be especially useful when known underwa-

ter features exist that might present challenges to navigation. The key difference is

that trilateration is solving for our position as the unknown, rather than the destination.

Figure 2.5: Trilateration in 2-D
Trilateration in 2-D (Figure 2.5): given two
known points a and b at a distance combined
with known angles α and β referenced from
the line ab to our unknown point c, we can
geometrically complete the triangle to allow
precise determination of our location c from
the intersection of the lines ac and bc.

Figure 2.6: Trilateration in 3-D

Trilateration in 3-D (Figure 2.6): three dimen-
sional signal intersections narrow a determined
position. Fourth satellite pinpoints estimated po-
sition.
from http://giscommons.org/files/2010/01/2.141.gif

Adding a third dimension changes this

slightly. Trilateration in 3-D appears a bit

puzzling at first. Looking at Figure 2.6 this

explanation follows. The intersection set

of two satellite signals form a circle (upper

right, circle shown in dark red). A third sig-

nal will add another circle, which intersects

the first creating two probable positions

(lower left depicted in magenta). A fourth

satellite will further refine the intersection

down to a precise location (lower right,

yellow circle meets at magenta point.) [19].
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In practise, these satellites are all moving, and the critical factor becomes the

time that each signal was received. In fact with the possibility that all the satellites have

timing errors the complexity can grow very quickly. GNSS satellites all contain at least

a pair of highly accurate atomic clocks, which are referenced to a ground based network

of cesium atomic clocks, and synchronized as required. These atomic clock sources are

very expensive, published estimates above US$100,000 each. Ground based receivers have

inexpensive clocks, which effectively forces them to adjust for their time inaccuracy by

requiring a fourth satellite signal.

2.4 Satellite Signal Anomalies

Satellite signals are transmitted at very low power (typically 25W [32]), and run into many

interesting problems. Obvious limitations exist but the overall system is very sound, and

would not have been implemented in such a widespread manner if it were totally unreli-

able. The challenges are most broadly considered as three major categories, namely clock

errors, atmospheric errors and orbital errors. Each of these will be discussed in more de-

tail below. Much of this data has been posted online by the various university departments

that are studying these phenomena. [13, 33, 34]

Primary sources for GPS error:

• Clock Errors

Satellite’s use highly accurate atomic clocks, yet even these do have time drift and

require monitoring and resetting through the command centre. Receiver clocks

are far less accurate. “Where you are” is highly dependant on “what time it is”,

with speed o f light× time = distance to the satellite. Even a one microsecond

drift of the satellite clock can be very significant in determining GNSS receiver

position. Where this gets interesting is taking c×1µs = distance representing a

one microsecond timing error, giving 3×108m/s ×10−6s = 3×102m = 300m dis-

tance. By extension 300m≡ one microsecond and 0.3m = 30cm ≡ 1 nanosec-

ond or 10−9 seconds. In other words a single nanosecond error can alter posi-
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tion by 30cm. Satellite clock accuracy is kept within range of a few nanoseconds

(10−9seconds). I recently discovered that the satellite clock updates are generated

through a Kalman Filter.

• Lower Atmosphere – up to 50km above the surface

The Troposphere, Tropopause, and Stratosphere layers delay signal transmission.

Satellites lower in the sky to the observer are much more affected by these lower

atmospheric effects since the distance that signal traverses through these layers is

much greater. Some researchers refer to delays as signal propagation errors.

• Upper Atmosphere – 50-1000km above the surface

Ionospheric Scintillation [33, 35, 36] can create a blockage or deflection of satellite

signals. It is caused by charged particles (ions) which dynamically alter signal

refraction. Solar activity (wind, flares, sunspots, etc.) can send charged particles

that affect these Ions. Other issues (space weather for instance meteor showers,

time of day, geomagnetic activity, etc.) can also affect the ionosphere.

• Orbital Drift

Orbit shapes are eccentric rather than circular, and they are constantly drifting. Ve-

locity is also variable. GPS control provides updates to these trends through the

ephemeris data.

• Multipath

satellites below 15◦ in the sky can reflect signals downwards causing airborne multi-

path errors. It is suggested best practise to disregard these satellites in calculations

to avoid this error. Antenna designs that favour signal polarization (such as choke

rings) naturally deselect these lower in the sky satellites which can contribute to mul-

tipath errors. [11]

2.5 Position Algorithms

Improvements to GPS Positioning Algorithms are a large topic for technical papers. The

current techniques appear to be based on orthogonal transformations and iterative least
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squares methods, and I was surprised to learn that some use variants of Kalman filtering

(KF) (typically extended or unscented, and some use of complementary KF). It is not clear

to me that KF used with Differential GPS (DGPS) is an area of interest often discussed,

where a known fixed ground station is used in conjunction with the moving receiver to

understand any satellite position errors, and isolate those errors to dramatically enhance the

mobile receiver results. This approach could be implemented into selected DSRC Road

Side Units (RSU’s) pretty effectively, and should not be ruled out as a potential solution to

the Urban Canyon (UC) issue.

A more detailed table describing how the SAE J2735 standards for Connected

Vehicle handle Position Confidence is included in Chapter 3 Table 3.7 on page 40.
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2.6 Linear Quadratic Estimation

2.6.1 What is a Kalman Filter?

Numerical Analysis examines concepts with algorithms and methods to handle estimation

problems. Two newer areas of interest based on numerical analysis techniques are Sensor

Fusion and Signal Processing. Sensor Fusion specifically expects inputs coming from

various unrelated (sensor) sources and can be used to reduce error in estimating the infor-

mation in these systems. Signal processing has a similar goal of feature extraction based

on noisy input data. Both of these areas rely on Kalman Filters as one of the techniques

used to extract information.

Control systems, navigation, guidance and signal processing data streams all con-

tain noise and features that can be extracted. Rudy Kálmán developed a technique to filter

the noise and predict the tn+1 state for the data. He presented this to NASA in 1960 where

it became very helpful for the Apollo program, and eventually has become the de facto

standard used throughout navigation, radar, guidance and control systems.

Kalman’s seminal paper “A New Approach to Linear Filtering and Prediction

Problems” [20] contained a real breakthrough in handling the error.

The general Kalman Filter (KF) concept is that a type of weighted average will

be calculated at each time step and loaded into a covariance matrix. Effectively it’s de-

signed as an optimal least–square–error recursive predictor corrector algorithm [25]. The

other key concept in Kalman is which do you trust more, the predictions or the measure-

ments? This is handled by the gain—an idea that you should have the ability to tune the

results to favour whichever of these better suits your needs.

The covariance initial state for position tracking are the classical newtonian equa-

tions. The measured state at any time tn+1 is processed with the covariance (weights) from

the prior tn step which should improve the predicted state. The Kalman Filter algorithm

is designed to build the cumulative result weights into the covariance matrix, to remove the

noise, and to allow the gain to favour predictions (low gain) or measurements (high gain)

depending on the particular need.
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On-board navigational systems relying on GPS and vehicle sensors will notice a

significant lag in external data—which will be described later.

The Extended Kalman Filter (EKF) and unscented Kalman Filter (UKF) are non-

linear versions of Kalman Filters. Extended KF uses a Taylor function to approximate

the system, and the unscented transform is used to estimate the system states (mean and

sigma distributions). These both generate linear function so that the KF premise of normal

gaussian distributions will work, and therefore the EKF or UKF can generate a workable

(non-optimal) estimate of the KF.

2.6.2 Kalman Optimal Estimates

In following Kalman’s [20] paper three types of Optimal Estimates were discussed.

”To have a concrete description or the type of problems to be studied,
consider the following situation. We are given signal x1(t) and noise
x2(t). Only the sum y(t) = x1(t)+x2(t) can be observed. Suppose we
have observed and know exactly the values of y(t0), ...,y(t). What can
we infer from this knowledge in regard to the (unobservable) value of the
signal at t = t1, where t1 may be less than, equal to, or greater than t? If
t1 < t, this is a data-smoothing (interpolation) problem. If t1 = t, this
is called filtering. If t1 > t, we have a prediction problem. Since our
treatment will be general enough to include these and similar problems,
we shall use hereafter the collective term estimation.” [20]

A case is made that the Urban Canyon has specific large distribution errors such

as ”interference effects, namely signal cross–correlation, multipath and echo-only signals”

by Salman Syed et al. [15] and the erratic nature of these errors make modelling diffi-

cult. Again Syed [15] discussed map matching, which runs the risk of ‘picking’ the

incorrect road segment to arbitrarily map onto. Inertial Navigation systems typically

experience drift, and require a stable position fix to reset for this drift. GPS experiences

loss-of-signal (urban canyon, other atmosphereric effects) and needs to be carried through

these outages.
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2.7 Road Grade or Slope

Road grade (or gradient) appears to be the conventionally used term to describe inclines,

defined as “Rise over run” times 100%. In mathematical terms rise / run would be the

tanα , representing the slope. A 45◦ incline would have a rise/run of 1/1, and therefore

considered a 100% grade. This should become clearer below.

The steepest paved roadways have approximately 30% grade for short distances.

Normal road grades are kept under 4% and normal highway maximum grade would be 8%.

Mountainous roads like Pike’s Peak1 have an average 6.7% grade and maximum grade of

10.5%. These translate into rise/run of 1/15 for 6.7% grade (3.8◦ incline) and 2/19 for

10.5%, a 6◦ incline.

Looking at an impossibly steep example road grade using the triangle below,

Figure 2.7: Road Grade

A

OH

α!!
!!

!!
!!

!!
!! α represents the degree of slope,

tanα is the rise
run = 3

8
with opposite side (rise) 3, adjacent side (run) 8,

• giving tan(α) = .375, thought of generally as 37.5% grade (= 100% x rise/run)

• and ∠ α = 20.6◦

Using a familiar real world example, the Ambassador Bridge2 structure has a 46m rise and

half the 2286m span is 1143m. This means that the grade (gradient) is 100 x ( 46
1143 ) or 4%

and solving for α we have the following:

α = arctan( 46
1143) = arctan0.04 = 2.3◦

which is a 1 in 25 rise/run. This has the feel of being steep, and the Colorado

highways that are 8% grade (≈4.6◦) also feel dramatically steep. Special consideration

will be necessary for mountainous urban areas. San Francisco3 boasts 25 streets with 25%

1https://parks.coloradosprings.gov/ · · · Pikes Peak Americas Mountain/pphighway2009map.pdf
2http://www.ambassadorbridge.com/intlcrossing/bridgefacts.aspx
3https://priceonomics.com/the-steepest-streets-in-/
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or steeper grade, Seattle4 has more than a dozen exceeding 20% grade. Urban canyon

areas are generally not adjacent to these extreme grade roadways, and appear to have a

better sky view than typical urban canyons. San Francisco has steeper grades than Seattle

yet the later has more urban canyon problem areas. Extreme limits are in the range of 3

in 8, or a 37.5% grade (multiplying the grade by the linear ground distance covered will

provide the correct limit). Altitude changes in hilly areas will be normally in the range of

1 in 4 rise/run, which is a 25% grade. Limits for typical reasonable altitude changes will

be normally in the range of 1 in 12 rise/run, which is a 8.3% grade or ≈ 4.8◦ incline.

2.7.1 Elevations

During review of GPS trails, it was noted that elevation information was inconsistent, as

noted in Figure 4.7. Reference points can provide a context for the data. A few local

points of interest are given in the table below:5

Table 2.6: GPS Position and Elevation References

Location Latitude Longitude Elevation

Highest point in Detroit
University District 42◦25’37”N 83◦8’23”W 204 m

(west of Palmer Park)
Low Water Datum

Detroit River 42◦20’25”N 82◦59’12”W 174m
(Fort Wayne station 9044036)

Ambassador Bridge Towers 42◦18’44”N 83◦4’37”W 293m
rise 118m from water level

Ambassador Bridge Roadbed Peak 220m
DTW Metro Airport 42◦12’44.7”N 83◦21’12.2”W 196.7 m

DET City Airport 42◦24’33.5”N 83◦00’36.6”W 190.8 m

4https://www.seattlebikeblog.com/2013/01/17/the-steepest-streets-in-seattle/
5https://tidesandcurrents.noaa.gov/gldatums.html
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2.8 Literature Review

2.8.1 Annotation - Townsend 1995

Townsend, Bryan R and Fenton, Patrick C and Van Dierendonck, Keith J and van Nee, DJ Richard,
”Performance Evaluation of the Multipath Estimating Delay Lock Loop”, 1995. [37]

The problem which the researchers/authors addressed:
“GPS pseudo-range and carrier phase measurements suffer from a variety of systematic
biases. The sources of these are:

(i) Satellite Orbit Prediction

(ii) Satellite Clock Drift

(iii) Ionospheric Delay

(iv) Tropospheric Delay

(v) Receiver Clock Offset

(vi) Signal Multipath ” [37]

The first four errors can be dealt with using modelling or differencing techniques, and ‘re-
ceiver clock offset’ is often the unknown variable solved for in determining position. Multi-
path presents a bigger challenges, degrades accuracy and increases signal processing time.

Previous work by others referred to by the authors:
The authors previously developed MEDLL (Multipath Estimating Delay Lock Loop) and
appear to have pioneered these studies.

Shortcomings of previous work:
Delay Lock Loops (DLL) are discussed in general, including P-code DLL and of partic-
ular interest was the Early-Late DLL (E-L DLL). Previous GPS receiver code dedicated
only two or possibly three correlators to each satellite tracking channel–while the MEDLL
algorithm requires 10 or more.

The new idea, algorithm, architecture, protocol:
Multipath signals, whether bounced from buildings or the ground, always reach the receiver
later than the primary signal.

Experiments and/or analysis conducted:
The authors appear to be principal researches at NovAtel. GPS equipment and software
used to capture and record GPS system data was developed by NovAtel, specifically using
antennas without choke rings. Experiments were done measuring signals from the NovAtel
corporate rooftop in Calgary. Double difference residuals were calculated from the two
receivers which allows removing satellite based errors. A ‘short based’ test and a simulator
test were both described.
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Results that the authors claim to have achieved:
The authors claim that they have demonstrated a 10 to 40% improvement using the MEDLL
method on their ‘Short Based’ test, and yet state disappointment believing that the theo-
retical possibility is much higher. Apparently there was not enough multipath in that test
to highlight the possible performance benefits. In the final results it is claimed that the
proposed MEDLL receiver performance improves (reduces DLL multipath error) by up to
90% over the Narrow CorrelatorTM receiver.

Claims made by the authors:
Multipath signals tend to have one or two ‘strongest’ signals present at one time. It appears
that their technique will accomplish the goal to improve position accuracy by determining
satellites to exclude using their proposed method. This is seen by the authors as signif-
icantly useful for DGPS applications (those using a known fixed position ground based
reference antenna in addition to any other mobile unit).

Citations to the paper by other researchers:
This was cited by 154 other papers according to Google Scholar.

2.8.2 Annotation - Psiaki 2001

Psiaki, Mark L, ”Smoother-Based GPS Signal Tracking in a Software Receiver”, Proceedings of
ION GPS, 2001. [38]

The problem which the researchers/authors addressed:

ABSTRACT: “Global Positioning System (GPS) signal tracking algorithms have
been developed using the concepts of Kalman filtering and smoothing. The
goal is to improve phase estimation accuracy for non-real-time applications. A
bit-grabber/software-receiver has been developed for the GPS L1 coarse/acqui-
sition signal. The bit grabber down-converts, digitizes, and stores the raw RF
signal. The software receiver tracks each signal using a 2-step process. The
first step uses phase-locked and delay-locked loops. The second step refines
the tracking accuracy through the use of linear smoothing techniques. These
techniques make optimal use of after-the-fact data.” [38]

The author says that this offline analysis work will help identify solutions for areas with
low signal to noise ratio.
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Previous work by others referred to by the author:

Figure 2.8: GPS Bit Grabber GPS receivers all work as shown in their
Fig.1 (my Figure 2.8) on the left.

“The Kalman Filter and Smoother modules
in the software receiver implement functions
like those of the DLLs and PLLs of a con-
ventional real-time receiver: They estimate
the phases of the code and the carrier. They
also estimate the frequency and drift rate
of the carrier. The main difference from a
conventional receiver is that the smoother
block uses correlations which extend past
the time point of interest. These two blocks
are the subjects of the remainder of this
paper.” [38]

Shortcomings of previous work:
This is a new area using a software receiver to track GPS code signals.

The new idea, algorithm, architecture, protocol:
The author implemented his solution in software. Today we would call this ‘software
defined radio’ (SDR). He cautions that his “use of the term ’smoother’ and ’smoothing’
do not imply the standard KF meanings.”

“The main contribution of this work is in the area of GPS signal
smoothing, but there are two good reasons also to consider the subject
of Kalman filtering of GPS signals. First, Kalman filtering is closely
related to smoothing. Second, Kalman filters have been used to design a
PLL for tracking carrier phase and a DLL for tracking code phase. The
PLL and the DLL are needed in order to get the receiver’s replicas of the
carrier and code to match closely with the received signal; otherwise,
the linear models of this paper’s third section would not be valid for
purposes of smoothing.” [38]

Experiments and/or analysis conducted:
The author noted that cycle slips and loss of signal lock are significant issues. He men-
tioned that the adaptation of these linear kalman filter methods using a non-linear KF might
be required for these degraded signal areas.

Results that the author claims to have achieved:
The author has designed two software GPS receiver algorithms, which perform PRN code
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phase tracking and carrier phase tracking, both acting on the civilian C/A signal, but only
for offline processing. Both algorithms use KF’s, the first one for a phase-lock loop (PLL)
and the other for a delay-lock loop (DLL).

Claims made by the authors:
The author claims that using his method the results are quite good at tracking both code
phase and carrier phase signals.

“The bottom line is that smoothers offer significant SNR improvements
and the ability to track dynamic signals without introducing an estima-
tion lag.” [38]

Citations to the paper by other researchers:
This was cited by 69 other papers according to Google Scholar.

2.8.3 Annotation - Groves 2005

Groves, Paul D and Long, Daniel C, ”Inertially-aided GPS signal re-acquisition in poor signal to
noise environments and tracking maintenance through short signal outages”, 2005. [18]

The problem which the researchers/authors addressed:
Poor signal to noise environments create GPS signal tracking gaps. This paper reviews
a method using INS aiding to re-acquire GPS signal tracking in these degraded signal ar-
eas. The main focus is a technique for re-acquisition of GPS satellite signals in poor signal
to noise environments using ‘aiding’ from the INS.

“This work is relevant to navigation in poor GPS signal to noise envi-
ronments such as indoors, in some urban canyons and in the presence
of jamming or interference. It is also relevant where frequent short-term
blockage of GPS signals is a problem, such as navigation in urban areas
and highly dynamic applications.” [18]

The authors say that integrated INS/GPS is required to operate in areas with degraded signal
to noise, and that these following are the main three categories:

(i) Unintentional interference;

(ii) Weak signal applications;

(iii) Deliberate jamming.

The Urban Canyon would be considered a ‘weak signal’ area.

Previous work by others referred to by the authors:
The authors referred to “controlled reception pattern antenna (CRPA)” systems, which is
a solution that currently is restricted to military use due to size and cost. They state that
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INS/GPS integration is necessary where GPS signals cannot be tracked. They also refer
to their previous work Combating GNSS interference with advanced inertial navigation
on increasing the number of Kalman filter states. They also discuss three general tech-
niques for integrating INS and GPS which are i) loosely-coupled, ii) tightly-coupled and iii)
deep. There is some discussion around these in several sections of the paper. QinetiQ’s
proprietary adaptive tightly coupled (ATC) technique is also discussed.

Shortcomings of previous work:
So called AIDED RE-ACQUISITON THEORY leverages all unused GPS tracking channels
to reacquire the lost GPS signal. This assumes a ‘well calibrated’ INS/GPS system which
implies that the user to satellite line-of-sight velocity is known. This means that only one
satellite can be re-acquired at a time.

“Deep or ultra tightly-coupled integration techniques combine the GPS
signal tracking and INS/GPS integration functions into a single estima-
tion algorithm [e.g. 10, 11,12]. This increases the anti-jam margin by a
few decibels over what ATC can achieve, but requires a redesign of the
navigation system architecture, with a two- way 50 Hz interface between
the GPS receiver and integration algorithm.” [18]

The authors also mention that “A problem with anti-jam integration techniques is that once
a GPS signal is lost, it is very difficult to re-acquire it. This is because conventional signal
acquisition algorithms require a very strong signal to noise environment” [18]

The new idea, algorithm, architecture, protocol:
The authors appear to be principal researchers at QinetiQ in Farnborough, UK, and they
have developed a “proprietary prioritisation algorithm” for the situation where tracking
multiple satellite signals have been lost, deciding which signal to reacquire first. Detailed
statistical analysis are described in the theory section, including σ thresholds for evaluating
results.

Experiments and/or analysis conducted:
QinetiQ Integrated Navigation Simulation (QINS) was used in their analysis. QINS in-
corporates “kinematic and INS models, a GPS receiver and satellite model and a reconfig-
urable set of ATC INS/GPS integration algorithms.” A simulated 10◦/hour INS drift error
was used similar to what the authors call a ‘low-grade’ INS, namely the Boeing Digital
Quartz IMU (DQI). Five satellites were tracked using P(Y) code signals over four re-
acquisition simulation scenarios. The duration of each simulation was four minutes, and
one P(Y) signal was jammed for two minutes or more in each test. Multiple runs of these
simulations were done at various threshold settings to create the data tables. “Tracking
lock was detected by comparing the measured carrier power to noise density, C/N0 against
a threshold.”

Results that the authors claim to have achieved:
• inertially aided re-acquisition is practical for C/N0 >10 dB-Hz.
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• results confirm that increasing the detection threshold increases the re-acquisition
time

• results show that a quicker re-acquisition can be attained by reducing the correlator
spacing

• the number of false re-acquisitions was significantly greater than predicted

Claims made by the authors:

“A simulation assessment of code tracking maintenance has been con-
ducted using QINS. Again a P(Y) code GPS receiver and 10/hr INS were
simulated. With a well calibrated INS and four satellites tracked with
strong signal to noise ratios, the code tracking maintenance algorithm
was able to operate for a 200 s outage with code tracking resuming al-
most immediately after the reintroduction of the signal. Longer outages
have yet to be simulated.” [18]

Citations to the paper by other researchers:
This was cited by 7 other papers according to Google Scholar.

2.8.4 Annotation - Meguro 2009

Meguro, Jun-ichi and Murata, Taishi and Takiguchi, Jun-ichi and Amano, Yoshiharu and Hashizume,
Takumi, ”GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera”,
2009. [5]

The problem which the researchers/authors addressed:
Can GPS Multipath Mitigation be implemented using an infrared camera image to deter-
mine areas that should be masked out, thereby including only LOS satellites while exclud-
ing the others?

Previous work by others referred to by the authors:
Fixed, floating and Differential GPS results are compared in static test as a baseline for
understanding position results. It appeared to the authors that the popular multipath esti-
mating delay-locked loops (MEDLLs) method could be improved upon by their method of
excluding the satellites causing the position errors.

Shortcomings of previous work:
Positioning antennas away from buildings or specially designed (choke rings) are impracti-
cal for Connected Vehicle OBU’s. Narrow-correllator technique from early 1990’s noted
as “can eliminate multipath errors better than the former methods” [5] although it is not
discussed in depth.
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The new idea, algorithm, architecture, protocol:
Create a dynamic infrared sky image model to use in determining which satellites are truly
in LOS. The authors refer to NLOS satellites as ‘invisible’ satellites. They proposed a
model to measure signal timing errors and use this data to infer the inherent error; thereby
deciding whether or not a particular signal should be excluded.

Experiments and/or analysis conducted:
A very well provisioned test vehicle with triple GPS antennas, a specially constructed dual
mirror (rather than fisheye) lensed omnidirectional infrared camera was fitted to a minivan
test vehicle. Static and slow speed (under 20 km/h) tests where conducted to determine
viability of the concept. GrafNav software from NovAtel was used to assist in recording
live data streams and further in post processing. This greatly aided the efforts to under-
stand exact satellite positions which is required to determine whether or not a satellite was
‘invisible’.

Results that the authors claim to have achieved:
A concept for measuring ‘dilution of precision’ (DOP) is used, and by excluding so-called
‘invisible’ satellites it is suggested that overall DOP may be reduced in many cases. The
authors noted that their approach improved position accuracy even where it is clear from
their results data (in the static position test specifically regarding the DGPS comparison)
that DOP has in fact increased.

Claims made by the authors:
Multipath errors were measured to indicate 20-60m for the ‘invisible’ satellites. It appears
that their technique will accomplish the goal to improve position accuracy by determining
satellites to exclude using their proposed method.

Citations to the paper by other researchers:
This was cited by 94 other papers according to Google Scholar, which would indicate an
active level of interest in this research.

2.8.5 Annotation - Khodjaev 2010

Khodjaev, Jasurbek and Park, Yongwan and Malik, Aamir Saeed, ”Survey of NLOS identification
and error mitigation problems in UWB-based positioning algorithms for dense environments”,
2010. DOI 10.1007/s12243-009-0124-z [39]

The problem which the researchers/authors addressed:
Non Line of Sight (NLOS) identification and mitigation techniques are each classified into
tables for comparison purposes. NLOS identification classifiers are (i) range estimates,
(ii) channel statistics, and (iii) 3-D building and terrain maps. Mitigation classifiers are
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based upon direct path and statistical detection.

Previous work by others referred to by the authors:
NLOS identification comparison in their table 1 refers to seven papers. Mitigation tech-
niques comparison in their table 2 refers to eleven papers.

Shortcomings of previous work:
Previous NLOS identification papers all seemed to either lack “threshold selection for de-
cision making” [39] or had calculation troubles–too many calculations to be useful unless
done in offline processing, or no comparison with previous work. Building map details
must be very precise, and done in 3D the ray tracing is noted as complex and very time
intensive to calculate. Earlier mitigation techniques are more interesting. The Least
Squared method appears to be very computationally expensive. The single Linear Pro-
gram method described only works if at least one LOS source is available. Direct Path
detection attempts also take a long time to calculate. Only the Filtering techniques appear
to have robust ability to adapt to real time use.

Claims made by the authors:
Channel statistics techniques appear to perform better than other methods of NLOS chan-
nel identification. Non-iterative methods are recommended to reduce computational com-
plexity. NLOS mitigation techniques that are most widely used are statistics based. The
authors believe that since the NLOS signal travels what they refer to as an ‘excess’ path, a
statistics based method is the best solution.

Citations to the paper by other researchers:
This survey has been cited by 55 other papers according to Google Scholar.
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Identifying & Mitigating GPS Anomalies

A research paper from the ITS 2014 World Congress [30] piqued my interest in the Urban

Canyon issue. The authors stated in this would be the first Urban Canyon connected

vehicle testbed in North America. They noted the following:

“To date, no Test Bed has been deployed in an urban canyon environ-
ment. During initial testing, the vehicles in the urban canyon area are not
able to lock on to as many GPS satellites as they would in an open area.
As a result, the accuracy of the in-vehicle GPS systems is significantly
reduced, and some vehicles on the GUI appear to run into buildings or
disappear due to these coverage gaps (especially in the tunnel section of
the test bed where it takes significant time for the GPS system to re-lock
onto the satellites). Significantly more research is going to be needed to
determine the accuracy of GPS in urban canyons and to identify means
to overcome those accuracy issues.”

p11, Detroit Builds First Urban Canyon Testbed [30]

Figure 8, p11, Detroit Builds First Urban Canyon Testbed [30]
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3.1 Research Methodology Overview

Reviewing data path traces containing GPS signals, it became apparent these position fixes

are at best estimations. Details of this issue are shown in §4 Results. As signals are

interpreted and processed, an estimate of position is given which should also contain an

estimate of the precision. Commercial units like the Garmin which I tested provide lati-

tude, longitude and altitude—yet position accuracy is not easy to determine. Their web-

site [40] claims “extremely accurate” position fixes due to twelve specific parallel channel

receivers and then states their equipment has an average accuracy of 15m. Bednarz [41]

discusses generally excellent but not assured accuracy of GPS positions. The Arada Lo-

comate On-Board Unit datasheet boasts a “less than 1 m” accuracy [42].

GPS position was available in all datasets, including the following fields:

φ which represents the latitude,
λ which represents the longitude, and
h which represents the altitude

This becomes the initial state vector for GPS only calculations, and the beginning portion

of the state vector for the full OBU calculations.

Reviewing the literature there were several options available to extract the best

data fit, given that the data appears noisy (see Figure 4.7). Digital signal processing uses a

variety of methods, with the top two most popular being the Viterbi algorithm and Kalman

filtering. The most popular for navigation and guidance applications appears to be the

Kalman filter, and this is where my research has focused.
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3.2 Work Flow Diagram

The work flow to examine the Urban Canyon issue is shown here. A detailed explanation

is given below in section 3.3 “Steps Completed”. These steps were taken in gathering

and processing data for the Urban Canyon project:

Figure 3.1: Workflow Diagram
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3.3 Steps Completed

My approach to improving the Urban Canyon GPS location problem is as follows:

1. Data Collection of two distinct classes were collected and used to further my re-

search. These are described below:

(a) As a first step I duplicated the issue noted in the ”Detroit Builds First Urban

Canyon Connected Vehicle Test Bed” report [30], using data from a commercial

Garmin Nüvi GPS unit, mounted above the dashboard on the windscreen. De-

tails are described in subsection 3.4.1

i) Collected GPS data, including date, time, latitude, longitude, and altitude.
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(b) A second dataset was gathered, containing DSRC OBU Data obtained from

an Arada test vehicle. The GPS antenna mount was above the rear–view mir-

ror. Details are given in subsection 3.4.2

i) Collected OBU data, including GPS and IMU information, such as utc

(epoch) date, time, various GPS data such as latitude, longitude, and alti-

tude, and IMU available data which also contains velocity and acceleration

in the x, y and z directions.

The data gathering resulted in several datasets of both cases, which helped to gain

perspective on the data elements that were available and those which would clearly

not be helpful (a turn signal indicator or trunk light on would have no effect on

the journey). Two additional OBU connected data files were also examined, one

sampling at 200ms or five times a second (5 Hz), and the other containing fifteen

IMU sensor input cycles per second, while the GPS remained constant on both of

these until the utc time changed each second. Many reports in the literature indicate

that the GPS are commonly updated at 5Hz instead of the 1Hz cycle that was present

in our data.

2. Data Analysis

Data analysis began with importing the csv data files into MS-Excel. Standard

statistical measures were made included µ mean, and σ standard deviation for the

state vector details. Calculations were performed to determine geographic distances

between consecutive points. Details of these calculations are found in subsec-

tion 3.5.2. I also examined the data with data mining (and statistical analysis)

software from the University of Waikato, which is their “Waikato Environment for

Knowledge Analysis” known widely by it’s acronym Weka. Weka results can be

seen in Appendix B on page 84.

3. Visualization of data using comparison charts and 2-D maps to see the effects of

the urban canyon data. An explanation of these calculations is found in sec-

tion 3.6. The two classes of data collected are as follows below:
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(a) GPS only data, and

(b) GPS including CAN bus data

i) Review detailed datasets and chart individual components, to understand

where the data is becoming non-linear.

ii) Create comparison charts showing the cross-correlation between individual

data columns, demonstrating how position error becomes visible

iii) Determine statistical details, including mean and standard deviation of the

dataset.

4. Smoothing using Kalman Filter Python and iPython programs. Details of the

Kalman Filter prediction correction cycle, and the python and iPython programs are

found in subsection 3.7.1.

(a) Explore the use of various Kalman Filter algorithms

i) Standard KF expects linear functions and Bayesian distribution of noise.

ii) Extended KF and Unscented KF handle non-linear probability distribu-

tions.

5. To Evaluate and Refine the data, an iterative approach was taken, with descriptions

and details found in section 3.8 regarding the following data and calculations:

i) Limited data from the preliminary GPS only (lat,long,alt) or (φ ,λ ,h)

ii) More extended data based on GPS (lat,long,alt) including additional IMU data

iii) Calculated various interpolations of data, including use of Haversine formula

for great circle distances, IMU data for yaw and yaw rates.

iv) Visualize data on a 2-D map to see the effects of the urban canyon on data

updated through KF filtering and smoothing.

v) Provide various outputs, charts, etc. to understand the components of the KF

and related data.
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3.4 Data Collection

3.4.1 GPS Data Collection

Since the Detroit DSRC Testbed had demonstrated problems as noted by the engineering

paper [30], I decided to start there. This testbed contains several sections which are

clearly Urban Canyons, blocking well over 50% of the sky view, and some sections are

over 95% obscured. The buildings block enough of the satellite signals so that the effects

are dramatic and it is therefore relatively easy to reproduce the Urban Canyon problem.

Preliminary data was gathered by using a conventional Garmin nüvi 2798 re-

ceiver, travelling through the ITS Detroit DSRC testbed. The GPS receiver was mounted

inside the windshield using a suction cup mount, and powered through the auxiliary power

port. I then drove through the Testbed area on two separate occasions, establishing that the

GPS was operating well and capturing data. On both trips I was able to collect GPS path

data. Once the driving tests were complete, the GPS unit was removed from the vehicle

and data was then offloaded for further processing.

The Garmin hardware and software were closely coupled, and this integration

allowed a very nice 2-D map visualization of the path driven. These following are the

software tools for the Garmin: (i) Basecamp, (ii) Connect, (iii) Express, (iv) MapInstall

and (v) MapManager.

Basecamp is the most useful software, specifically handling maps and also allow-

ing data export in several formats. I used the GPX format for initial 2-D map visualization

which proved quite useful. I also exported using CSV (comma separated values) for-

mat file, which highlighted some of the interesting details behind Garmin’s data collection

philosophy.

The Garmin nüvi recorded trip waypoints which can be used to provide post trip

mapping. The interval is not user controllable, it seems to vary from each second to about

45 seconds on the primary run examined, with an average of just over 7 seconds. During

periods of imprecise position details the intervals were very close together (one second),

and longer gaps when at steady speed on relatively straight roadways. This was adequate
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to determine the position, direction of travel and the velocity. In addition to the latitude

and longitude I also was able to obtain the altitude data. This data provided a working set

sufficient as the initial proof of concept for the proposal. These details are visible in §4

Results under Figure 4.3 and Figure 4.5.

What became immediately apparent during the driving test was the behaviour of

the on-screen map display, which worked fine in normal highway operation yet became

‘indefinite’ and jumpy in the degraded signal areas. It was visible that a problem was

occurring for the system to display and update the on-screen image, but it seemed to be

solved by the system lagging and updating when new info became available. After the

driving test, the data was offloaded for further analysis. More details on this are shown

in §4 Experiment Results on page 52, the main point here is that I noticed from most 2-D

mapping applications altitude is ignored, almost as if it were considered to be ‘noise’. The

nüvi GPS data clearly grabbed what it had calculated for altitude, and a noticeable differ-

ence was visible in altitude (as seen in Figure 4.7 on page 56). Position path data was

pretty consistent, until the ‘Urban Canyon’ was encountered – Altitude appeared to contain

quite a bit of the error.

3.4.2 OBU Data Collection

DSRC data was a bit more difficult to obtain. Negotiating US DOT paperwork with

University of Windsor Office of Research (ORIS) commenced in November 2014, and the

agreements were not completed until May 2015. During May 2015 a data recording

was done on a driving test thorough the Detroit DSRC Urban Canyon and surrounding

area. This data set was representative of the current state of technology in DSRC OBU’s,

and included GPS position and altitude, and many (over eighty) CAN bus details, several

of these are interesting to this proposal.

I was fortunate to have access to On-Board Unit (OBU) data from an Arada test

vehicle. This included Inertial Measurement Unit (IMU) data in addition to the GPS

receiver data. The GPS antenna was mounted inside the windshield above the rear view

mirror using double faced tape. The OBU was powered directly through the vehicle

CAN Bus operating on vehicle power. The test driver drove through the Testbed and
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surrounding area capturing data. This included portions of the Detroit DSRC testbed as

well as two adjacent tunnels on Atwater street. Tunnels are considered a ‘degraded’ GPS

environment. [32] Once the driving tests were complete, the data was made available and

offloaded for further processing.

3.5 Data Analysis

3.5.1 Questions on Data from the Urban Canyon

Regarding the preliminary GPS trace, I posed the following questions: (i) what may be

learned from the data gathered? (ii) Will it be possible given only the a priori path data

(say for instance beginning at t0 over the last several measurements) to predict or estimate

based on current time t the possible or probable position at time t+1, t+2, ...t+10? (iii)

Moreover, if looked at from the standpoint of error estimation can we predict when a read-

ing is in fact outside of allowable limits? (iv) What would help us determine and set

acceptable limits? (v) And if, having identified this erroneous reading, is there a method

to mitigate this error and restore the system accuracy? Let’s begin with the preliminary

GPS data.

3.5.2 Statistical Analysis of OBU Data

Path trace data from the Urban Canyon was gathered by the Arada OBU. GPS and

CAN Bus data are combined at the OBU and the information was offloaded for analy-

sis. The data included many useful fields which are outlined in Appendix C Table C.9 on

page 86. Our Arada OBU research data originally contained 4,920 rows with 84 columns,

and upon review 39 of these were duplicate columns. The CSV formatted data file shows

that the GPS was only being updated once a second, although the other CAN Bus data

became available more frequently. Depending on which dataset was being reviewed the

CAN Bus data could often be updated fifteen to twenty-two times per second. GPS up-

dates were very consistently given each second, which may be by design or firmware setup

in the Locomate [42] OBU.
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My first thought with nearly 5,000 rows of data and 45 remaining unique columns

was to look at a machine learning technique, to see what statistical correlations could be

drawn. From looking at the data I noticed the Altitude was a significant factor, since

altitude varied widely most of the time when the track was jumping on the 2-D maps. I

used Weka and attempted many combinations that proved unsatisfactory in drawing any

real correlations. I have included results from the Arada Test data which can be seen in

Appendix B on page 84, which correlated nicely on the altitude using the popular ‘random

forest’ statistical grouping technique.

Graphs depicting GPS latitude, longitude and altitude were correlated so that the

errors could be visualized (see Figure 4.7). Vertical line segments show clear indications

of where the data shows discontinuity. A statistical analysis of the raw data demonstrated

to me that these large vertical steps were demonstrating a large variance from the mean

in each individual aspect. Let h represent altitude [21] and the mean be h̄. When

considering the mean altitude h̄, considered over the last five, ten, or twenty seconds, it

was found that the last 20 seconds gave far better results. The standard deviation between

the was much greater than I would have anticipated. In one dataset the altitude standard

deviation was 7.8m, and another it was as much as 22m. For the standard deviation σ=

7.8m, 68% of the altitudes should fall into ±1σ , 95% should fall into ±2σ from the mean

(h̄). It appeared that the largest data set possible for these measurements would yield better

results, and that the statistical outliers specifically for altitude were considerable when in

the area of the urban canyon.

Although the time interval is quite small (changing each second), the GPS dis-

tance and directions were calculated at every step using the Haversine formulas. The

“spherical law of cosines” provides poor accuracy when points are too close together, due

to computational results from rounding errors. Haversine calculations appear to pro-

vide better accuracy over these shorter distances which are consistently involved in V2V

research. These distance comparisons were done to determine where the most likely

disagreement was between GPS signals compared to the IMU results.
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3.5.3 DSRC Details for On-Board Unit Data

My review focussed on the direct data collection of first GPS only path details, and second

OBU direct output of integrated data, including GPS and CAN Bus information. This

was convenient for my analysis, and is the way that any correction to the OBU will be

implemented. Examining these data files it was not readily apparent what the intent was

for several fields. Looking beyond the direct OBU data, I noticed some interesting items

when reviewing DSRC OBU data specifications. Several details that were not clear in

the IEEE 802.11p [43] standard specifications, but were more clearly shown in the 1609

specs [44, 45]. The 1609.2 [44] describes how GPS positions are stored as shown below:

The latitude and longitude fields contain the latitude and longitude as
an sint32 type, encoding the latitude and longitude in 1/10th integer
micro-degrees relative to the World Geodetic System (WGS)-84 datum
as defined in NIMA Technical Report TR8350.2.

Data Example (from IEEE 1609.3 specs, p123(2010-August)):
3D Location And Confidence

Hex Example
06
0F
01 7A 12 AC
07 36 F8 BB
03 E8
36 *
E *
FF FF FF FF

WAVE Element
ID=6
Length=15
latitude (4 octets): + 24.777388◦

longitude (4 octets): +121.043131◦

elevation (2 octets): +100.0m
position confidence (4 bits): 3=100m
elevation confidence (4 bits): 6=10m
positional accuracy (4 octets): unavailable

* Table 3.7 below describes half-byte fields for Position and Elevation Confidence
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Table 3.7: Position / Elevation Confidence

unavailable (0) B’0000 Not Equipped or unavailable
a500m (1) B’0001 500m or about 5 * 10−3 decimal degrees
a200m (2) B’0010 200m or about 2 * 10−3 decimal degrees
a100m (3) B’0011 100m or about 1 * 10−3 decimal degrees

a50m (4) B’0100 50m or about 5 * 10−4 decimal degrees
a20m (5) B’0101 20m or about 2 * 10−4 decimal degrees
a10m (6) B’0110 10m or about 1 * 10−4 decimal degrees

a5m (7) B’0111 5m or about 5 * 10−5 decimal degrees
a2m (8) B’1000 2m or about 2 * 10−5 decimal degrees
a1m (9) B’1001 1m or about 1 * 10−5 decimal degrees

a50cm (10) B’1010 0.50m or about 5 * 10−6 decimal degrees
a20cm (11) B’1011 0.20m or about 2 * 10−6 decimal degrees
a10cm (12) B’1100 0.10m or about 1 * 10−6 decimal degrees
a5cm (13) B’1101 0.05m or about 5 * 10−7 decimal degrees
a2cm (14) B’1110 0.02m or about 2 * 10−7 decimal degrees
a1cm (15) B’1111 0.01m or about 1 * 10−7 decimal degrees

SAE J2735 detailed specifications on PositionConfidence

3.6 Visualization

Each record represented many data fields and recorded these at a specific time. Us-

ing MS-Excel allowed interpolation of information relating each (row) record to the prior

record. This was very useful in determining and double checking heading, velocity, and

rates of change for latitude, longitude, altitude, etc. Breaking up these individual columns

to provide charts allowed comparisons of the specific positions details, latitude, longitude

and altitude at specific times which provides a great visualization tool. The results of these

charts are presented in Figure 4.7 on page 56.

The Arada Locomate “Classic” OBU [42] uses standard UTC time format and

synchronizes the internal clock to the signal gathered from the satellite transmissions. This

records date and time as the number of seconds from January 1, 1970, known as the “Unix

epoch” (literally ‘the beginning of something’). Excel counts time from January 1, 1900,

and the Unix epoch begins at 25569 for Excel. UTC time is converted for spreadsheets as

utc time + 25569 + time zone adjustment using our local time zone correction of
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GMT-4 hours, which for this calculation is therefore TZ = -4/24. The Excel formulas for

this is given as follows (assuming the utc date is in cell B2):

Excel Date number = B2 / (60∗60∗24)+25569− (4/24) (3.1)

Excel Date (human readable) = TEXT( B2 / (60∗60∗24)+25569− (4/24),

”yyyy−mmm−dd hh : mm : ss” ) (3.2)

Excel dates are adjusted to the local computer time zone, where the GPS utc time is

aligned with GMT. Our standard time adjustment of GMT-05:00 becomes GMT-04:00

during daylight savings time for this area, explaining the use of “-(4/24)” in these equa-

tions. Equation 3.1 leverages Excel’s internal formatted dates to allow all date calcula-

tions, and Equation 3.2 is most convenient for visual comparisons.

The Arada OBU recorded two distinct velocity fields which are the GPS speed

and the CAN Bus speed. The measurements are provided in km/h. A consistent lag

between these allows comparison of the current second GPS speed with the prior second

CAN Bus indicated speed, illustrated on the chart in on Figure 4.6 on page 54. As we

will see in §4 when these speeds vary by more than a 1.5 km/h threshold there is normally

something happening to indicate a position issue especially when a group of records all

exhibit this condition, although in isolation it could also be caused by uneven braking or

acceleration forces.

Haversine calculations between consecutive positions were are calculated. This

allows comparison of great circle distances travelled. The calculations give results in

metres travelled, and the conversion formula 3.6 * x m/s = y km/h allows convenient

further comparison to OBU speeds.

MS-Excel does run into some problems with proper calculation of the haversine

formulas, notably the required ACOS function displays an error code in five of the five

thousand (or 0.1%) of the Locomate OBU records, where the calculation cell results are

shown as #NUM!. The ACOS is expecting values in the range between [-1,1] and depending

on the precision chosen and rounding, you can inadvertently pass a π/2 (≈ 1.57) to be sent

to the function, which is outside of this allowable range.
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3.7 More Kalman Filter Information

3.7.1 Kalman Prediction Correction Cycle

As you will recall the standard Kalman Filter is designed for the specific case of linear fil-

tering. With many natural processes behaving strictly in a non-linear fashion, non-linear

functions have been developed. The Unscented Kalman Filter (UKF) is used in Robotics

for SLAM (System Localization and Mapping). The UKF has higher computational com-

plexity, on the order of n3 [26] where n is the number of elements in the state vector. For

the special case of state estimation the Extended Kalman Filter (EKF) is on the order of

n2 [26], and it is the defacto standard for navigational and guidance systems use.

The method for using Kalman Filters is to follow a process of of initializing the

known states, by building a training data set, and using this a starting point for loading the

formulas and equations, to begin running through the KF algorithm. The details of the

algorithm are as follows:6

Figure 3.2: Kalman Filter-Smoother Prediction-Correction Cycle
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6

initialize matrices I,P,Q,R once to begin the cycle
J are Jacobians, partial derivatives of state vector elements

6http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies
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3.7.2 Kalman State Vectors

For each case of Kalman Filter the state vector changed.

Standard kalman filter using only GPS data:

state vector xt = (φ ,λ ,h)

Standard kalman filter using GPS and CAN Bus data:

state vector xt = (φ ,λ ,h, x-vel, y-vel, z-vel, x-accel, y-accel, z-accel)

Extended kalman filter using GPS and CAN Bus data:

state vector xt = (x, y, yaw ψ , vel, yaw-rate ψ̇)

Unscented kalman filter using GPS and CAN Bus data:

state vector xt = (φ ,λ ,h, yaw, yaw-rate)

3.7.3 Kalman Filter Explanation

The Kalman “Prediction-Correction” cycle with Jacobians can be a confusing, and so it

seems the EKF and UKF are a bit more intuitive to me. State estimation of a system at

time t evolves from the prior state at time t−1 according to the following equation:

xt = Ftxt−1 +Btut +wt (3.3)
where

xt is the state vector containing the terms of interest for the system at time t and

time t−1 (i.e. position, velocity, heading)

Ft is the state transition matrix, used to apply the effect of each system state pa-

rameter at time t−1 to the system state at time t

(i.e. position and velocity at time t−1 both affect position at time t)

Bt is the control input matrix which applies the effect of each control input param-

eter in the vector ut on the state vector

(i.e. applies the effect of the throttle, brake, steering settings on system velocity

and position)
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ut is the control inputs vector (in our case containing steering angle, throttle set-

ting, braking force and other CAN bus data)

wt is the vector containing process noise terms for each parameter in the state

vector. Process noise is assumed to be taken from a zero–mean multivariate

normal distribution with covariance matrix Qt

Measurements of the system can also be performed according to the model

zt = Htxt +vt (3.4)
where

zt is the measurement vector

Ht is the transformation matrix which maps the state vector parameters into the

measurement domain

vt is the measurement noise vector corresponding zt . Like the process noise,

the measurement noise is assumed to be zero–mean Gaussian white noise with

covariance Rt .

3.8 Evaluate and Refine

Once the first dataset (GPS only) was available I used the Garmin BaseCamp software to

produce 2-D maps (shown in Figure 4.3 and Figure 4.5 on page 52) of the two driving

paths taken. Results showed that as suspected the GPS worked perfectly outside of the

Detroit DSRC testbed, and also I was able to duplicate the issue noted by the testbed en-

gineering paper. [30] With this information plotted, I then examined the spreadsheet to

correlate the mapped points with the detailed records, paying special attention to the ‘in-

teresting’ areas. I found that the delta differences between consecutive records were very

interesting.

The OBU provided both GPS and IMU sensor data, and comparing the current

time GPS velocity(t) with the CAN Bus velocity(t-1) it was clear that a difference of more

than 1.5 metres per second was indicative of a GPS error.
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Comparing GPS velocity with the haversine calculated velocity I also found that

a difference of more than 1 metre per second was a good indicator that an issue existed.

Altitudes in a group of records were recorded as below 175 m (the GPS reports

these as metres above sea level). From the local chart datum Table 2.6 this is clearly below

water and not possible for our driving test.

Looking at the ∆h (altitude) a difference of more than 1 metre per second was

also highlighting a problem.

∆φ (latitude) and ∆λ (longitude) did not independently show much information,

however the haversine calculations did shed some light on what was happening. The

distance calculation provides the meters separation and this converts quickly to kilometers

per hour allowing comparison back to the IMU data. Speeds in excess of 120 km/h are

not common in this urban area, with speed limits of 50 km/h. A bound can be established

that ∆speed must not exceed 120km/h or 33.3 m/s. When the urban canyon issue surfaces

this is quite often the case.

With these calculations completed I began to put the data through the Kalman

Filters to establish how they worked, would they do the job, and what else could be done.

3.9 Urban Tunnels

GPS requires direct line of sight (and it’s interesting also GPS does not work under wa-

ter). It’s worthwhile noting that within 500m of the Detroit testbed area there are six

significant tunnels. The tunnels are as follows: on US-10 southbound under Cobo Hall,

either taking (i) exit 1A 310m to West Jefferson exit or (ii) exit 1B 285m onto Larned,

through (iii) 86m under the Millender Center, or on (iv) Atwater street 174m under Hart

Plaza or (v) 150m under Cobo Arena from the DSRC test drive, and also the (vi) 1.68km

Detroit-Windsor Tunnel). These long tunnels are GPS shadow areas and special treatment

will need to be taken to make their position reports accurate.
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3.10 GPS Position Discard Threshold Method

Examining the various standard correction routines it became clear that another approach

was necessary. Normally some version of the Kalman Filter, whether standard, extended

or unscented should have been able to deal with the inconsistencies. The standard kalman

filter was not useful to smooth the urban canyon data, and the extended (EKF) did a much

better job. Altitudes from the GPS are clearly not correct much of the time, and the

statistical details for intermediate points led to seeing a bigger picture of pre-filtering or

combing the data. Given these various parameters how would a pre-cleanup of the data

improve position accuracy? These are several parameters that appeared interesting to

consider:

1. Altitude Change

(a) Recalling our road grade example from page 20 in Figure 2.7 the most extreme

grade in the world would be less than a rise/run of 3/8, (∠α 20.6◦) meaning that

the altitude cannot ever change by more than 37.5% of the distance covered.

(b) Hilly area road grades nearby extreme grade areas (some urban San Francisco

or Seattle streets) should normally be less than 1 in 4, or 25% grade. This

would be indicated by a limiting factor of 1/4 (=0.25) of the linear distance

covered for these areas.

(c) Maximum city and highway road grades outside of the mountainous or hilly

areas should normally be less than 1 in 19, or 5.3% grade or 3◦. This would be

indicated by a limiting factor of 1/19 (=0.053) of the linear distance covered.

2. Distance Travelled

(a) OBU velocity is given in metres per second. 36 km/h = 10 m/s, giving us a

3.6 factor to compare for impossible or improbable velocities (our data noted

speeds an order of magnitude higher when the GPS position reports were com-

promised)

3. Direction Travelled
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(a) Haversine calculations provide GPS vector details including direction and mag-

nitude

4. Direction Changes (yaw rate ψ̇)

(a) turns should be ‘normal’ or standard rates, commonly <0.1 rads/sec [46]

5. Hysteresis effects on velocity from OBU vs. GPS

(a) A one second hysteresis effect (lag) in GPS ‘catching up’ with the IMU data

was noted above in Figure 4.6

(b) When the IMU indicated the vehicle was stopped, GPS reported velocity and

position were inaccurate.

(c) The Garmin nüvi internal database provides a speed limit warning display. This

valuable resource should be integrated into all CV systems.

6. Path Prediction using IMU Data

(a) IMU data will confirm slowing or speeding up, and help us understand whether

or not a turn is reasonable.

(b) Considering the last five seconds of travel do the GPS and IMU roughly indicate

the same track? Believing the IMU data is fine, do we trust the GPS vector

(haversine direction and distance)?

(c) where the ‘predicted’ path and the GPS path diverge, can we use strictly CAN

data until the GPS regains enough data to provide an accurate fix?

(d) identifying that our GPS cannot be trusted has been established in all these

preceding steps. How will we establish when can we trust our GPS position

again?

The Garmin nüvi databases were loaded with relevant traffic zone information,

including school zones, speed limit details which were very accurate, and the emergency

notification system that can help alert drivers to public service messages about impending

slowdowns, it appears that we should expect more information will be available to assist
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drivers. Also for these purposes I’d like to see Altitude included so that impossible low or

high altitudes would be bounded, and erroneous data thereby discarded. It would be good

to know if we should use the ‘extreme’, merely ‘hilly’ or ‘normal’ grade constraints. In

the specific case of our data I used the Table 2.6 elevation data as a ‘floor’ and would not

allow ‘below water’ altitudes.

3.10.1 GPS Position Discard Threshold – Pseudocode

To elaborate on the GPS Position Discard Threshold (PDT) Method from section 3.10, I

have included a pseudocode routine. The pseudocode should better describe how the

limiting criteria are chosen, and how they are proposed to be applied. The outcome after

applying the GPS PDT method are given in section 4.5, with the key result mitigation

illustrated in Figure 4.12.
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GPS Position Discard Threshold – Pseudocode
’ GPS PDT Method for Eliminating Erroneous GPS path data

’ INITIALIZE (and regularly re-initialize):

’ General factors to consider before implementing the PDT Method

’ Run these steps to initialize processing and re-run every 5 or 6 minutes, sooner
’ if there are sustained altitude changes (more than one minute at a significantly
’ [±25m] changed altitude) or speed limit changed (such as highway to city streets).

1. Altitude Change limits are based on terrain, as described in Figure 2.7
Determine which geographic area best suits conditions from the following:

(a) Extreme Grade:
the most extreme grade in the world would be less than a rise/run of 3/8,
(∠α 20.6◦) meaning that the altitude cannot ever exceed 37.5% of the
distance covered. Limiting factor (=0.375)

(b) Hilly Grade: (should cover San Francisco, Seattle, etc.)
This should be less than 1 in 4, or 25% grade.
A limiting factor of 1/4 (=0.25) of the linear distance covered for these
areas.

(c) Normal Grades:
maximum grades outside of the extreme or hilly areas should normally
be less than 1 in 19, or 5.3% grade or 3◦.
a limiting factor of 1/19 (=0.053) of the linear distance covered.

F Set the current altitude change limit factor based on the above selection.

2. Speed Limit
F Set expected ‘current’ speed limit maximum — allowing an anticipated
commonly occurring over speed < ≈ 30%.
Also load warnings for school zones, construction, incidents.

3. Direction Changes (yaw rate ψ̇)
F set ‘normal’ or standard turn rate limit, based on history or known driving
style... typically <0.2 rads/sec, more comfortably <0.1 rads/sec [46]

’ ITERATION STEPS:

1. Read GPS once per second.

2. Simultaneously read OBU CAN Bus (IMU) data.

3. Calculate changes ∆ from prior step at time t−1 to current time t
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GPS Position Discard Threshold – Pseudocode (continued)

4. Process GPS data vector {latitude, longitude, altitude} for ‘great circle’ dis-
tance and heading using Haversine calculations.

5. Determine altitude change from prior step using Equation 3.5

∆ Altitude = Altitudet−Altitudet−1 (3.5)

6. Calculate haversine distance travelled using Equation 3.6.
(Use earth radius 6378000m to return distance in metres)

∆ distance = distancet−distancet−1 (3.6)

7. Calculate haversine heading, hdg, (measurement is in radians)
Convert ∆ distance from m/s to km/h using Equation 3.7

vel = 3.6 ∗ ∆ distance (3.7)

∆ heading = headingt−headingt−1 (3.8)
’ PROCESS:

1. Altitude:
Compare does ∆ Altitude exceed altitude change limit factor * ∆ distance ?

IF TRUE THEN discard position data, break from process
2. Velocity:

Is IMU velocity zero?
IF TRUE THEN discard position data, break from process

Does IMU velocity at prior step differ from GPS velocity by 5km/h ?
IF TRUE THEN discard position data, break from process

3. Direction Travelled:
Compare does ∆ heading exceed turn rate limit?

IF TRUE THEN discard position data, break from process
’ NOTES:

’ All Breaks from this procedure highlight enough measurable difference to believe
that an Urban Canyon or other GPS position anomaly has been detected

’ End Threshold Discard Method pseudocode .....
s
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Experiment Results

4.1 Steps Completed

Preliminary data gathering using the Detroit DSRC testbed was done in October 2014 using

a commercial Garmin GPS. The Detroit testbed contains seventeen ARADA Locomate

Roadside Units (RSU’s). The map of this Detroit testbed is shown in Figure 4.1. Traffic

on Larned is eastbound only, and Congress is also a one-way street westbound. Two

driving tests were done to gather preliminary data (see Figure 4.2 and Figure 4.4). GPS

position data was plotted (in Figure 4.3 and Figure 4.5) and used to understand these initial

results. These results should be typical of any other urban canyon environment and would

be easily reproduced anywhere that shows significant loss of direct satellite view.

Figure 4.1: ITS 2014 Detroit DSRC Urban Canyon Test Track
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Figure 4.2: Test Run 1 - True Track

Figure 4.3: Test Run 1 - GPS Track showing Urban Canyon Issue

Figure 4.4: Test Run 2 - True Track
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Figure 4.5: Test Run 2 - GPS Track showing Urban Canyon Issue

It was apparent that the GPS tracks were not aligning with the navigational ‘track made

good’, showing trails appearing to jump. Prior results with the GPS in car map display

never demonstrate these anomalies. The onboard GPS map display while the vehicle is in

motion is not adjusting in this way – the track continues in a more or less ‘normal’ fashion,

sometimes ‘shuddering’ briefly. When the detailed data capture is reviewed it shows a

great deal of confusion, as can be seen in both the Figure 4.3 and Figure 4.5.

After seeing the initial (GPS only) problem was repeatable, a more reliable dataset

was required. An ARADA systems vehicle, fitted with on-board units (OBU’s) was run

through the Detroit DSRC testbed. The data was aggregated and a Wireshark dissection

of this data was completed. The data was transferred for further offline processing.

Real world data comes with ‘interesting’ variations. Velocity and acceleration

are DSRC OBU inputs and I would have expected some better consistency in that sensor

data. The velocity and acceleration data both appear highly variable. It is not trivial to

adjust these to provide reference relative to geographic measurements. The sensors are

set up to provide x,y,z axis information. These reference from the vehicle, x represents

left (negative) and right (positive) turning, y represents forward (positive) and reverse (neg-

ative), z represents (positive) hill climb or (negative) descent. Motion terms are typically

used to describe these as roll, pitch, and yaw. Roll would hopefully not happen in cars,

it’s rotation centered on the y axis, which would involve tires not remaining in contact with

the pavement. Pitch is rotation centered on the x axis, think of this as the nose up or down
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orientation. Yaw is rotation around the z axis, which is how the vehicle normally turns.

Altitude information in the datasets was examined. It quickly became apparent

that compared to Table 2.6 on page 21 and it was noted that dramatic changes in Alti-

tude were inevitable, and some drastic adjustments in latitude and longitude were also

noted. These are visible in Figure 4.7 on page 56.

One point of interest became clear originally from another researcher’s thesis

(Gaurav Sood) [47] who noted the GPS speed lagged behind the more direct readings from

the CAN Bus sensors. I also charted the GPS velocity vs. CAN Bus velocity, and the

results are shown in Figure 4.6 on page 54. It can be clearly seen here that the GPS

speed measurements lag roughly one second from the CAN Bus measurement. This is

interesting as a comparative feature in the datasets to determine discrepancies. Since this

hysteresis normally remains very constant at one second, we will also be able to use this as

a key feature threshold.

Figure 4.6: ARADA OBU Velocity Comparison CAN Bus vs. GPS

4.2 Method

Passing GPS test data through Weka shows results which indicate a high correlation when

used with specific filtering techniques. Various filters were applied, and ultimately a Ran-
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dom Forest technique showed 99.88% correlation. Weka is an amazing tool for machine

learning and statistical data mining, and this leads to an offline, after the fact data analy-

sis. To be of practical in vehicle use we would need dynamic in vehicle processing, which

means that Weka will not be the correct software tool.

Urban Canyon’s have been demonstrated to have a significant effect on the accu-

racy of a vehicle determining its’ own position based on satellite signals. By reviewing

a capture of GPS track details in this environment, it became evident that a data driven

method of detecting this error could be possible. Further, a method for predicting position

could also be possible. Using well defined signal processing techniques on the given data

we should have enough information to determine what position is possible.

4.3 Charts and Graphs

A diagram of GPS position data is shown and several areas of interest are discussed. Time

scale measures from 2600 to 3600 representing 1001 seconds (16 minutes and 41 seconds)

elapsed. Horizontal lines denote position unchanged over time with respect to each of

these variables (latitude, longitude, and altitude) and are anticipated due to stops (traffic

lights, etc.). The expectation is that each of the lines would be smooth with DSRC

measuring data five times a second (capture rate 5Hz), however that is the stated rate for

DSRC BSM message transmissions. The OBU Data that we collected was only updating

the GPS data at 1Hz (once per second). Vertical lines are only expected when data gaps

occur or other errors have been observed.

I assigned an arbitrary four digit time stamp to correspond to each second in the

Arada test, to make my comparison chart references and analysis easier. I began at step

1000, and progressed through the end of the drive test which was 4986, total trip duration

one hour, six minutes and 42 seconds. The Table 4.8 shows significant time stamps for

comparison with all the figures 4.7 through 4.12 using the same time epochs.

The Longitude scale (on right in magenta) uses negative numbers denoting de-

grees west (east is up).
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Table 4.8: Epoch Cross-Reference for GPS Map Position Figures

Hdg. Location - Interest Epoch Colour Fig:

WB Altitude spike 10m 2sec a - 2792 - 2794 yellow 4.7
NB Brush St. - traffic stopped a - 2790 - 2832 yellow 4.8
WB turning corner much too wide b - 2972 - 3018 cyan 4.8
WB Atwater under Hart Plaza c - 3212 - 3230 light blue 4.8
WB Atwater under Cobo d - 3246 - 3259 pink 4.8
EB US-10 S exit 1A under Cobo e - 3313 - 3321 amber 4.8
EB Larned–Urban Canyon path jump f - 3443 - 3466 green 4.8
EB EB Jefferson under Cobo exit 1A E - 3318 - 3320 amber 4.9
EB EKF improved F - 3443 green 4.9
SB SB Randolph–SKF mess G - 3464 4.9

Epoch(1000) = utc(1434580013) which represents 2015-Jun-24 18:36:53 Eastern Time.
Heading abbreviations are West-bound (WB), North-(NB), East-(EB) and South-(SB)
Colour references chart area on Figure 4.7

Figure 4.7: DSRC GPS Position Analysis

Six areas are noted on this Figure 4.7. The lettered areas correspond to the later

figures in this section specifically figs: 4.8–4.12. The chart breaks out latitude (green
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line above) and longitude (magenta line underneath) at the top, and the altitude separately

(blue line) at the bottom. Another reference line for the National Elevation Database

(NED Altitude) which is accurate to one arc-second (≈ 30m), has been included (dark

red) to compare and contrast with the GPS Altitude. Several types of error situations are

discussed as follows:

(a) (altitude in yellow) North bound on Brush, the red reference line crosses latitude and

longitude shown as smooth curves, with no disruption even when the altitude shows

a dramatic jump. The jump observed here is (184.5 to 189.3) 4.8m in 200ms, (184.5

to 196.5) 12m in 1s (which is 43.2km/h upward velocity—clearly impossible), while

the recorded vehicle surface velocity is 2.3m/s (8km/h)

(b) (cyan) this area is the corner of Congress and Washington—which looks normal on

this chart and becomes significant in later figures

(c) (light blue) Hart Plaza tunnel. Detroit River Low Water Datum (LWD) at 175m

provides a great reference threshold for impossibly low altitudes. Both areas (c)

and (f) shown are not possible for DSRC vehicles since they must operate above

water. For GPS underwater is considered a “degraded” environment. [32] Not

shown is the upper threshold, for Detroit is the University District (elevation 204m)

Table 2.6 on page 21.

(d) (pink) Cobo Hall–Atwater tunnel

(e) (amber) The US-10 SB exit 1A tunnel to Jefferson, which clearly shows vertical lines

in all three areas, latitude, longitude and Altitude. The altitude jumps from 180.6 to

229 (48.4m) in one step, and within one second is back into the 185m range. Lon-

gitude shows a change of 321m in a single step, where a local average around this

shows ≈ 15m. Latitude is least affected, shows a change of 179m in a single step,

where the local average is ≈ 2m.

(f) (green) the dramatic effect of vertical jumps in altitude (below) help highlight the

latitude and longitude areas that are also showing errors. Altitude changes (182 to

123.3) 58.7m in one step, and recovers over four seconds later to ≈ 179m.
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These dramatic spikes will allow us to flag these erroneous GNSS positions. This

should be sufficient for noticing the problem is present, and allowing error correction to be

invoked.

4.4 Position Maps

Several web resources worth mentioning that are very helpful for visualizing navigational

details are Open Street Maps7, All Trails8, Thunderforest9 and of course Google Earth10.

The OpenStreet Map site has quite a few features and uses crowd sourced information. It

allows anyone to sign up, validates your account through email and allows you to add to

the crowd sourced details on the map. Alltrails provides routes for hiking, walking and

scenic trails, and a “Pro” option to create your own trail maps, push data to a smartphone

and integrate with your GPS. Thunder Forest caters to people needing a way to integrate

custom cartography and map hosting into their apps and web sites. Google Earth allows

3-D visualization, compatibility with every imaginable format of input and output, plus the

local Google Earth application to install on your local machine.

I’ve made frequent use of the GPS Visualizer 11 website. This site integrates the

most popular mapping backgrounds from Google, Open Street Maps, World Streets, Open

Sea Maps, National Geographic and the USGS, with many backgrounds from several other

providers ultimately featuring over fifty background types. I found this has better tools to

visualize the maps that I’m interested in producing. It also has the least cluttered, most

useable and straight forward design. Control over background opacity is given at 10%

increments from 0 through 100%. Waypoints are fully controllable including interactive

descriptions. Another great feature is that it will import many file formats and produce

overlay maps with up to nine tracks by incorporating a layering concept. The site was

designed using Perl scripts.

7https://www.openstreetmap.org
8https://www.alltrails.com
9https://www.thunderforest.com

10https://www.https://www.google.ca/intl/en/earth/
11http://gpsvisualizer.com
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4.4.1 Arada Raw OBU Data

The original Garmin GPS raw data is shown above in Figure 4.3 and Figure 4.5. The

Arada test data was a taken from the Arada offices in Southfield, MI with a destination

of University of Windsor. It includes a drive through the Detroit DSRC Testbed and

surrounding area. I have truncated the data to focus on the specific urban canyon problem

in the Detroit DSRC test area. The raw unprocessed GPS data collected from the Arada

OBU is shown below:
Figure 4.8: Arada OBU Raw Nav Data

There are several areas of interest in this raw OBU navigation track. The di-

rection of driving was entering from the east (right hand side) heading west-bound on

Jefferson, turning north onto Brush. The areas marked on the next few figures (figs:4.8-

4.12 match the chart in Figure 4.7 for comparison purposes. The first area of interest

is area (a) which is during a brief traffic stop the GPS was already experiencing position

difficulties only a few metres south of Larned-Brush. Heading down Congress there are

quite a few interesting wavers to the GPS version of the course. At Congress-Washington

(b) there is another odd mis-correct noted. Continuing south to Jefferson and south again

on Bates, the Arada test was in full sky view and the resulting data for this section of the
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driving test was quite good. Turning west-bound on Atwater, the vehicle once again en-

counters GPS shadow heading through the two tunnels (c) under Hart Plaza and (d) Cobo

Hall. Emerging the track stabilizes heading around Joe Louis Arena,. until the final drive

through (e) the US-10 exit 1A onto Jefferson back east-bound. The trail does stabilize

on Jefferson and follows along Woodward to Larned, and demonstrates the classic urban

canyon (f) track displacement for 21 seconds before recovering. The Arada vehicle track

was stopped at this point on Randolph before entering the Detroit-Windsor tunnel.

4.4.2 Arada OBU Data - Standard Kalman Filter Smoother

For the following diagrams, I’ve used upper case letters (E,F,G) to designate the areas

containing wild position errors. Lower case letters (a,b) show small odd position er-

rors. Lower case (c,d,e,f) lines designate the true path that was taken. The GPS only data

was run through my standard Kalman Filter smoother python program and the trace results

are shown below:

Figure 4.9: Arada Nav Data - Standard Kalman Smoother

As visible in Figure 4.9 with this attempt using the state vector of (φ ,λ ,h) only

our results were not very good. Significant areas of new problems occurred, these are
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labelled as in capitals where (E), (F) and (G) experienced a much worse track than antic-

ipated. The standard Kalman Filter relies on a bayesian normal distribution, and this is

clearly not the case given these results.

Additional IMU data, including the x-, y-, and z- velocity and acceleration was

available, and the state vector of (φ ,λ ,h, x-vel, y-vel, z-vel, x-accel, y-accel, z-accel) was

used through my standard Kalman filter smoother python program (which can be found in

Appendix A on page 75) resulting in the following output:

Figure 4.10: Standard KF after smoothing (including IMU velocity & accceleration)

As visible in Figure 4.10 with this attempt using the full IMU data for our state

vector of (φ ,λ ,h,xvel,yvel,zvel,xaccel,yaccel,zaccel), results were still not very good. Sig-

nificantly areas labelled as in capitals where (E), (F) and (G) show only very limited im-

provement over the GPS only data. The areas of (a) where the GPS wandered although

the vehicle was stopped, the ab track down Congress showed no improvement at all, and

neither did the recovery from the exit 1A tunnel (e and E). It appears that the limitations
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of the standard Kalman filter (SKF), which requires data under a normal bayesian distribu-

tion is clearly not able to deal with this non-linear input. Since the SKF is not enough to

overcome these problems, and the other forms of KF must be explored.

4.4.3 Arada OBU Data - Extended Kalman Filter

The Extended Kalman Filter allows a non-Bayesian distribution to be handled. Our state

vector of (x,y,ψ,v, ψ̇) provided a bit of additional information, namely the yaw (ψ) and the

yaw rate (ψ̇). The effects of these adjustments are dramatic compared to the failure of the

standard Kalman filter.

Figure 4.11: Extended KF after smoothing (using yaw ψ , velocity & yaw rate ψ̇)

Areas noticed on the raw data in Figure 4.8 like (a), (b), (c), (d), and (e) were

not affected by the EKF, but clear improvements were seen in the areas marked (E) and

(G). Area (F), our classic urban canyon, is still unaffected.

62 Experiment Results



www.manaraa.com

4.5 Position Discard Threshold Method Results

After setting rules and applying the criteria to our testbed data, the results of using a thresh-

old to discard erroneous data provides the following output:

Figure 4.12: Test Drive results after Position Discard Threshold method

It can be seen here that most of the really horrible problems from the previous KF

examples have been eliminated. The wavering problems from GPS position floating (a)

while the IMU indicates zero velocity are reduced. The oddly wide corner (b) at Congress

and Washington is still visible although slightly reduced. Both Atwater street tunnels

(c) and (d) still appear slightly off course. The very long (275m) exit 1A tunnel (e) to

Jefferson has a significant gap between reported points, but a much smoother appearance

than (E). And the wild urban canyon phenomena (F) that was originally present at on

Larned between Woodward and Randolph has been eliminated (f), as well as the confusing

tracks from (G).

While this does not particularly solve all the issues, it accomplishes getting rid

of the gross errors introduced by the loss of satellite signals. The larger gaps between
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markers highlight areas where data was discarded. These results should however provide

a much better idea of the ultimate track followed, and with a small adjustment our IMU

data could now be enough to assist in the main goal — sending far more accurate DSRC

BSM messages, including a much more accurate idea of position.

v
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Conclusions and Future Work

The Intelligent Transportation System is working towards the ultimate mobile device —

your automobile. Connected Vehicles offer the promise of increased road safety for all

travellers. Accident prevention tops the list of reasons to adopt this system. Location

reporting shared through BSM broadcasts rely on highly accurate calculations of every

vehicle’s position. Urban roadways are often shadowed from the best position source cur-

rently available, which must have clear line of sight to accurately interpret GNSS signals.

Urban Canyon’s, tunnels and other degraded GPS signal areas present a real chal-

lenge to accurate position reporting given our current operating conditions. Satellite signal

transmissions have equivalent energy to a twenty-five watt light bulb shining from 20,000

kilometres altitude.12 It’s amazing that from such a low power output we can receive and

correctly process these transmissions.

MEMS (micro-electro mechanical sensors) chips have made the costs affordable

and the implementation easier, and all current OBU’s are using these. IMU’s have the

reputation of ‘drift’ and will need frequent calibration to provide accuracy. GPS systems

by design are reliant on the external satellite signals and although they work great for the

majority of cases, it is critical for connected vehicles to have both systems in place to

correct for the critical outages caused by Urban Canyon settings.

The GPS PDT method for path analysis has been developed and shown as a solu-

tion for flagging large-scale erroneous GNSS position calculations. This will be sufficient

for noticing when large Urban Canyon position problems are present, and allowing error

corrections to be invoked. GNSS position calculations provide latitude, longitude and

altitude results. Altitude has proven to be most useful in getting a clear picture of where

the problem exists — it appears that current mapping techniques focus on producing two-

12Expected signal strength for earth-based GPS receivers is ≈1.6x10−16 watts [32]
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dimensional (or surface based) maps, which drastically underestimates the importance of

elevation in providing an accurate position.

5.1 Conclusions

Conventional GPS reliance on line-of-sight from receiver to satellite works well outside

of so-called ‘degraded signal’ areas. Error mitigation expects proper acquisition and

tracking of four or more satellite carrier PRN codes, and recovery after any signal tracking

lock problem. Operation of connected vehicles in large urban canyon areas cannot provide

accurate GPS positions without this initial signal lock-in, and will not be accurate in many

urban areas that have significantly blocked sky views.

In the US, the FAA has been working on enhancing navigational systems for

many years, and encouraged Loran use prior to the widespread availability of GPS. Their

first enhanced GPS system was called WAAS, a wide-area augmentation system, essen-

tially offering a differential GPS signal for all of north America. For further enhancement

in accuracy their local area augmentation system (LAAS), recently renamed more descrip-

itvely as Ground Based Augmentation Systems (GBAS) will provide much finer accuracy

(typically <1m). Fortunately there are equivalent systems to WAAS both in Europe (EG-

NOS) and Japan (MSAS).

Knowing that the OBU data can provide us with enough information to predict

a GPS signal anomaly based on the threshold values determined in §4, we can interpolate

positions during brief outages. What becomes more difficult is vehicles parking within

these urban canyon areas will likely be blocked from establishing their initial GPS position

fix. Our real world non-gaussian data directed our look at Kalman filters to the Extended

(EKF) and Unscented (UKF), yet continued investigation using more input would be re-

quired to use these effectively.

Differential GPS offers a very practical solution to overcome the urban canyon

issue. Surveys of these areas can be done without sophisticated equipment, such as I

have done with the Garmin GPS receiver in the Detroit testbed area. You may recall

from section 3.9 that the six significant tunnels nearby the Detroit testbed are all GPS
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shadow areas and special treatment will be necessary to accommodate these. In my

opinion the best technical solution in the long term will be widespread DGPS rollout to

cover tunnels and urban canyons. This could be done in or beside current selected RSU’s

during deployment. Until that can be accomplished our most practical solution for now

appears to be using threshold conditions to discard erroneous GPS positions.

5.2 Possible Areas for Future Work

Exploring use of IMU data as a primary source for navigation should be a direction for

the future. While IMU/INS units are well known to experience drift over time, it is a

small enough measurable amount to be considered highly reliable, while using GPS data

can help reset for this known drift factor. Position confidence is a major requirement

going forward, some way of determining the magnitude of errors is imperative. GPS

researchers are often quite happy to consider <5m as ‘accurate’ — but standard highway

lanes are 3m wide, and so clearly we need <1m to provide safety of life services. Careful

readers will recall that one nanosecond (10−9seconds) is ≈30cm, and so very small errors

in satellite signal timing can really throw off positioning. Fortunately IMU and other

APNT methods will be relatively simple calculations and well within the capacity of the

current OBU computational power.

Python scripts are provided showing the standard kalman filter, and pseudo-code

for applying my position threshold limits based method to discard erroneous GPS position

reports. The way forward must include the ability to achieve the following:

i) determine if the GPS signals can be trusted,

ii) use integrated OBU (MEMS) sensors to determine accurate position when GPS is

unreliable or unavailable

iii) use path prediction,

iv) economically integrate sensors for other systems beyond the GPS receiver.

The alternate position navigation and track (APNT) efforts currently being stud-

ied by the FAA [48] use an existing distance measuring equipment (DME) network and
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provide a new data frame that very closely matches current GNSS satellite communica-

tions, while providing an alternative for times when satellites are not available. This

”NextGen” technology is mandated for many aircraft by 2020, and planned adoption cov-

erage reaches through North America and Europe. Connected vehicle research should be

considering the extension of these APNT NextGen efforts as well as expansion of selected

RSU’s with integrated DGPS for the automotive segment of the Intelligent Transportation

System.

v
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Python Kalman Smoothing

1 # ! / u s r / l o c a l / b i n / py t ho n
2 # c od in g : l a t i n −1
3 ’ ’ ’
4 # <c o d e c e l l > p y k a l 5 . py Kalman F i l t e r f o r GPS t r a i l ( pa th t r a c e )

smoo th ing
5 #
6 # Ian Douglas f o r k e d 2015−Augus t upda ted t h r o u g h 2016−Augus t
7 ’ ’ ’
8
9 from pykalman import K a l m a n F i l t e r

10 import m a t p l o t l i b . p y p l o t a s p l t
11 import numpy as np
12 import random
13 from m p l t o o l k i t s . mplot3d import Axes3D
14 from h a v e r s i n e import h a v e r s i n e
15 from p y p r o j import P r o j
16 from os import mkdir
17
18 ’ ’ ’
19 # H a v e r s i n e computes g r e a t c i r c l e d i s t a n c e from l a t i t u d e and

l o n g i t u d e a n g l e s
20 # = 1 / 2 ∗ v e r s i n e = (1 cos ( ) ) / 2 or s i n ∗∗2( / 2 )
21 ’ ’ ’
22 def do hav ( s o u r c e l a t , s o u r c e l n g , d e s t l a t , d e s t l n g ) :
23 re turn h a v e r s i n e ( ( s o u r c e l a t , s o u r c e l n g ) , ( d e s t l a t , d e s t l n g ) , m i l e s =

True )
24 # END do hav ’
25
26 ’ ’ ’
27 # Conver t [ l a t i t u d e , l o n g i t u d e , a l t i t u d e ] t o UTM c a r t e s i a n v a l u e s
28 # GPS u s e s WGS84 s t a n d a r d
29 ’ ’ ’
30 def g p s t o c a r t e s i a n ( c o o r d i n a t e s , i n v e r t e d = F a l s e ) :
31 p = P r o j ( p r o j = ’ utm ’ , zone =17 , e l l p s = ’WGS84 ’ )
32 c o n v e r t e d = [ ]
33 f o r p o i n t in c o o r d i n a t e s :
34 l a t = p o i n t [ 0 ]
35 l n g = p o i n t [ 1 ]
36 a l t = p o i n t [ 2 ]
37
38 i f i n v e r t e d :
39 x , y = p ( lng , l a t , i n v e r s e =True )
40 e l s e :
41 x , y = p ( lng , l a t )
42
43 c o n v e r t e d . append ( ( y , x , a l t ) )
44
45 re turn c o n v e r t e d
46 # END g p s t o c a r t e s i a n
47
48 def c a l c u l a t e p o i n t v a r i a n c e ( measurements , c o r r e c t e d , a b s o l u t e =True ) :
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49 i f l e n ( measurements ) != l e n ( c o r r e c t e d ) :
52 p r i n t ”∗ 50 ∗ c a l c u l a t e p o i n t v a r i a n c e : L i s t s must be same

s i z e ” , l e n ( measurements ) , l e n ( c o r r e c t e d )
53 e x i t ( 1 )
54
55 v a r i a n c e = [ ]
56 f o r i in range ( l e n ( measurements ) ) :
57 i f a b s o l u t e :
58 v a r i a n c e . append ( ( abs ( measurements [ i ] [ 0 ] − c o r r e c t e d [ i ] [ 0 ] ) ,
59 abs ( measurements [ i ] [ 1 ] − c o r r e c t e d [ i ] [ 1 ] ) ,
60 abs ( measurements [ i ] [ 2 ] − c o r r e c t e d [ i ] [ 2 ] ) ) )
61 e l s e :
62 v a r i a n c e . append ( ( measurements [ i ] [ 0 ] − c o r r e c t e d [ i ] [ 0 ] ,
63 measurements [ i ] [ 1 ] − c o r r e c t e d [ i ] [ 1 ] ,
64 measurements [ i ] [ 2 ] − c o r r e c t e d [ i ] [ 2 ] ) )
65 re turn v a r i a n c e
66 # END c a l c u l a t e p o i n t v a r i a n c e
67
68 def c a l c u l a t e o f f s e t s ( measurements , c a r t e s i a n = F a l s e ) :
69 o f f s e t s = [ ]
70 f o r i in range ( l e n ( measurements ) ) :
71 i f i == 0 :
72 c o n t in u e
73 o f f s e t s . append (
74 ( measurements [ i ] [ 0 ] − measurements [ i −1 ] [ 0 ] ,
75 measurements [ i ] [ 1 ] − measurements [ i −1 ] [ 1 ] ,
76 measurements [ i ] [ 2 ] − measurements [ i −1] [2 ] ) )
77 re turn o f f s e t s
78 # END c a l c u l a t e o f f s e t s
79
80 def p o s i t i o n s f r o m o f f s e t s a d d i t i v e ( r e f , o f f s e t s ) :
81
82 p o s i t i o n s = [ ]
83
84 c u r r e n t p o s = l i s t ( r e f )
85 p o s i t i o n s . append ( c u r r e n t p o s )
86
87 f o r o f f s e t in o f f s e t s :
88 f o r i in range ( 3 ) :
89 c u r r e n t p o s [ i ] += o f f s e t [ i ]
90 p o s i t i o n s . append ( t u p l e ( c u r r e n t p o s ) )
91
92 re turn p o s i t i o n s
93 # END p o s i t i o n s f r o m o f f s e t s a d d i t i v e
94
95 def p o s i t i o n s f r o m o f f s e t s c o r r e c t i v e ( r e f s , o f f s e t s ) :
96
97 i f not ( l e n ( r e f s ) == l e n ( o f f s e t s ) ) :
98 p r i n t ”ERROR 9 6 : p o s i t i o n s from o f f s e t s n o t ma tch ing i n l e n g t h .

%d vs . %d ” % ( l e n ( r e f s ) , l e n ( o f f s e t s ) )
99 e x i t ( 1 )

100
101 p o s i t i o n s = [ ]
102
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103 f o r j in range ( l e n ( r e f s ) ) :
106 c u r r e n t p o s = l i s t ( r e f s [ j ] )
107 f o r i in range ( 3 ) :
108 c u r r e n t p o s [ i ] += o f f s e t s [ j ] [ i ]
109 p o s i t i o n s . append ( t u p l e ( c u r r e n t p o s ) )
110
111 re turn p o s i t i o n s
112 # END p o s i t i o n s f r o m o f f s e t s c o r r e c t i v e
113
114 ’ ’ ’
115 # measurements must be i n t h e f o r m a t
116 # [ ( x , y , z ) , . . . ]
117 ’ ’ ’
118 def r u n k a l ( measurements , t r a i n i n g s i z e =60) :
119 ’ c o u n t t h e number o f measurements

’
120 num measurements = l e n ( measurements )
121 ’ f i n d t h e d imens ion of each row

’
122 dim = l e n ( measurements [ 0 ] )
123
124 i f dim == 3 :
125 s imple mode = True
126 e l i f dim == 9 :
127 s imple mode = F a l s e
128 e l s e :
129 p r i n t ” E r r o r : Dimens ions f o r r u n k a l must be 3 o r 9 ”
130 e x i t ( 1 )
131 p r i n t ( ” r u n k a l 127 − r u n k a l smooth −−> s imple mode ={0} ” . format (

s imple mode ) )
132
133 t r a i n i n g s e t = [ ]
134 f o r i in range ( min ( t r a i n i n g s i z e , l e n ( measurements ) ) ) :
135 t r a i n i n g s e t . append ( measurements [ i ] )
136
137 i f s imple mode :
138 ’ run t h e f i l t e r

’
139 kf = K a l m a n F i l t e r ( i n i t i a l s t a t e m e a n = [ 0 , 0 , 0 ] , n d im obs =3)
140 ( s m o o t h e d s t a t e m e a n s , s m o o t h e d s t a t e c o v a r i a n c e s ) = kf . em (

t r a i n i n g s e t ) . smooth ( measurements )
141 e l s e :
142 k f = K a l m a n F i l t e r ( i n i t i a l s t a t e m e a n = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

n d im obs =9)
143 ( s m o o t h e d s t a t e m e a n s , s m o o t h e d s t a t e c o v a r i a n c e s ) = kf . em (

t r a i n i n g s e t ) . smooth ( measurements )
144
145 ’ means r e p r e s e n t c o r r e c t e d p o i n t s

’
146 re turn s m o o t h e d s t a t e m e a n s , s m o o t h e d s t a t e c o v a r i a n c e s , s imple mode
147 # END r u n k a l
148
149 ’ ’ ’
150 # P r o c e s s i n p u t [ l a t i t u d e , l o n g i t u d e , a l t i t u d e ] v e h i c l e pa th
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151 ’ ’ ’
154 def l o a d g p s t r a i l ( e x t r a f i e l d s = F a l s e ) :
155 i = 0
156 measurements = [ ]
157 h e a d e r =True
158 p r i n t ( ” l o a d gps t r a i l 152 − F a i l u r e h e r e means t h e i n p u t gps f i l e

d i d n o t have c o r r e c t Unix LF e n d i n g s . . . ” )
159 f o r l i n e in open ( ’ t h r e s h o l d−d i s c a r d−no−epoch . csv ’ ) : # ’

n a z e e r t r i p . c s v ’ ) :
160 i f h e a d e r :
161 h e a d e r = F a l s e
162 c o n t in u e
163 i += 1
164 f i e l d s = l i n e . s t r i p ( ) . s p l i t ( ’ , ’ )
165
166 i f i % 6 == 0 : # D i s p l a y e v e r y s i x t h e n t r y , p l u s f i r s t and

100 t h
167 p r i n t i , f i e l d s
168 c o n t in u e
169 e l i f i == 1 :
170 p r i n t i , f i e l d s , ’\n Length o f l i n e = ’ , l e n ( f i e l d s ) , ”

e x t r a f i e l d s = ” , e x t r a f i e l d s
171 c o n t in u e
172 e l i f i == 100 :
173 p r i n t i , f i e l d s , ”\n e x t r a f i e l d s = ” , e x t r a f i e l d s # ,

measurements
174 c o n t in u e
175
176 # p r i n t ” Pas t t h e 6 − 1 and 100 c l a u s e ” , i , f i e l d s
177 px = f l o a t ( f i e l d s [ 0 ] )
178 py = f l o a t ( f i e l d s [ 1 ] )
179 pz = f l o a t ( f i e l d s [ 2 ] )
180
181 i f l e n ( f i e l d s ) == 3 :
182 e x t r a f i e l d s = F a l s e
183 measurements . append ( ( px , py , pz ) )
184 c o n t in u e
185 e l s e :
186 e x t r a f i e l d s = True
187 p x v e l = f l o a t ( f i e l d s [ 3 ] )
188 p y v e l = f l o a t ( f i e l d s [ 4 ] )
189 p z v e l = f l o a t ( f i e l d s [ 5 ] )
190 p x a c c e l = f l o a t ( f i e l d s [ 6 ] )
191 p y a c c e l = f l o a t ( f i e l d s [ 7 ] )
192 p z a c c e l = f l o a t ( f i e l d s [ 8 ] )
193 measurements . append ( ( px , py , pz , p x v e l , p y v e l , p z v e l ,

p x a c c e l , p y a c c e l , p z a c c e l ) )
194 c o n t in u e
195
196 re turn measurements
197 # END l o a d g p s t r a i l
198
199 ’ ’ ’
200 # P l o t [ l a t i t u d e , l o n g i t u d e , a l t i t u d e ]
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201 # ( need t o f l i p l a t & long t o g e t x & y l o o k i n g r i g h t on t h e o u t p u t
204 ’ ’ ’
205 def p l o t f i r s t d i m ( da t a , f l i p x y =True , x l b l =” ” , y l b l =” ” , t i t l e =” ” , f i l e n a m e =

None ) :
206 x a x i s = [ ]
207 y a x i s = [ ]
208
209 i f f l i p x y :
210 minx = maxx = d a t a [ 0 ] [ 1 ]
211 miny = maxy = d a t a [ 0 ] [ 0 ]
212 e l s e :
213 minx = maxx = d a t a [ 0 ] [ 0 ]
214 miny = maxy = d a t a [ 0 ] [ 1 ]
215
216 p r i n t ” p l o t f i r s t d i m 208 − l e n g t h d a t a = ” , l e n ( d a t a )
217
218 f o r x , y , z , in d a t a :
219
220 i f f l i p x y :
221 t = x
222 x = y
223 y = t
224
225 x a x i s . append ( x )
226 y a x i s . append ( y )
227
228 minx = min ( x , minx )
229 miny = min ( y , miny )
230
231 maxx = max ( x , maxx )
232 maxy = max ( y , maxy )
233
234 p l t . x l im ( ( minx , maxx ) )
235 p l t . y l im ( ( miny , maxy ) )
236 p l t . x l a b e l ( x l b l )
237 p l t . y l a b e l ( y l b l )
238 p l t . t i t l e ( t i t l e )
239 p l t . s c a t t e r ( x a x i s , y a x i s )
240
241 i f f i l e n a m e :
242 p l t . s a v e f i g ( f i l e n a m e )
243 e l s e :
244 p l t . show ( )
245
246 p l t . c l o s e ( )
247 # END p l o t f i r s t d i m
248
249 def p l o t a l l d i m e n s i o n s ( p o s i t i o n s , f i l e p r e f i x ) :
250 s p l i t = [ l i s t ( ) , l i s t ( ) , l i s t ( ) ]
251
252 j = 0
253 f o r p o s i t i o n in p o s i t i o n s :
254 f o r i in range ( 3 ) :
255 s p l i t [ i ] . append ( ( j , p o s i t i o n [ i ] , 0 ) )
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256 j +=1
259
260 x v a l s = s p l i t [ 0 ]
261 y v a l s = s p l i t [ 1 ]
262 z v a l s = s p l i t [ 2 ]
263
264 p l o t f i r s t d i m ( x v a l s , f l i p x y = F a l s e , x l b l =” Time ( s ) ” , y l b l =”WGS84

L a t i t u d e ” , t i t l e =”WGS84 LATITUDE OVER TIME” , f i l e n a m e = o u t p u t d i r +
f i l e p r e f i x + ” a l l d i m x ” )

265 p l o t f i r s t d i m ( y v a l s , f l i p x y = F a l s e , x l b l =” Time ( s ) ” , y l b l =”WGS84
L o n g i t u d e ” , t i t l e =”WGS84 LONGITUDE OVER TIME” , f i l e n a m e = o u t p u t d i r
+ f i l e p r e f i x + ” a l l d i m y ” )

266 p l o t f i r s t d i m ( z v a l s , f l i p x y = F a l s e , x l b l =” Time ( s ) ” , y l b l =” A l t i t u d e ”
, t i t l e =” A l t i t u d e OVER TIME” , f i l e n a m e = o u t p u t d i r + f i l e p r e f i x + ”
a l l d i m z ” )

267 # END p l o t a l l d i m e n s i o n s
268
269 ’ ’ ’
270 ## MAIN Program here
271 ’ ’ ’
272 o u t p u t d i r = ” o u t p u t 5 / ”
273
274 t r y :
275 mkdir ( o u t p u t d i r )
276 e xc ep t OSError , e :
277 pass
278
279 #EXTRA
280 p a r s e e x t r a f i e l d s = True
281
282 # Load t h e pa th i n from t h e f i l e
283 measurements = l o a d g p s t r a i l ( e x t r a f i e l d s = p a r s e e x t r a f i e l d s )
284 p r i n t ” Main 274 − measurements ” , measurements , ”\n274

p a r s e e x t r a f i e l d s = ” , p a r s e e x t r a f i e l d s
285
286 # Conver t t h e s e measurements t o m e t e r s
287 c a r t m e a s u r e m e n t s = g p s t o c a r t e s i a n ( measurements )
288 p r i n t ” Main 278 − c a r t m e a s u r e m e n t s ” , c a r t m e a s u r e m e n t s
289
290 # ############################
291 ## P o s i t i o n s ##
292 # ############################
293
294 # Run t h e Kalman f i l t e r on t h e measurements
295 p r i n t ” Main 285 − Run KF − measurements ” , measurements
296 ss means meas , s s c o v a r i a n c e m e a s , c a r t s i m p l e = r u n k a l ( measurements ,

t r a i n i n g s i z e =60)
297 f i l t e r e d m e a s u r e m e n t s = ss means meas # from s m o o t h e d s t a t e m e a n s
298 p r i n t ” Main 288 − Run KF − f i l t e r e d m e a s u r e m e n t s ” , l e n (

f i l t e r e d m e a s u r e m e n t s )
299 f = open ( o u t p u t d i r + ’ s k f t r a i l f i l t e r e d . csv ’ , ’w’ )
300 f . w r i t e ( ’ l a t , lng , a l t , xdot , ydot , zdo t , xddot , yddot , z d d o t \n ’ )
301
302 # i f c a r t s i m p l e == True :
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303 f o r l a t , lng , a l t in f i l t e r e d m e a s u r e m e n t s :
306 f . w r i t e ( ” {0} ,{1} ,{2}\ n ” . format ( l a t , lng , a l t ) )
307 # e l s e :
308 # f o r l a t , lng , a l t , xdo t , ydo t , zdo t , xddot , yddot , z d d o t i n

f i l t e r e d m e a s u r e m e n t s :
309 # f . w r i t e ( ”{0} ,{1} ,{2} ,{3} ,{4} ,{5} ,{6} ,{7} ,{8}\ n ” . f o r m a t ( l a t , lng ,

a l t , xdo t , ydo t , zdo t , xddot , yddot , z d d o t ) )
310 f . c l o s e ( )
311
312 p r i n t ” Main 299 ”
313 # ############################
314 ## OFFSETS ##
315 # ############################
316
317 # Find t h e o f f s e t s be tween p o i n t s
318 o f f s e t s = c a l c u l a t e o f f s e t s ( measurements )
319
320 # Run t h e Kalman f i l t e r on t h e o f f s e t s
321 ss means , s s c o v a r i a n c e , o f f s e t s i m p l e = r u n k a l ( o f f s e t s )
322 c o r r e c t e d o f f s e t s = s s means # from s m o o t h e d s t a t e m e a n s
323
324 # R e c o n s t r u c t t h e c a r t e s i a n p o s i t i o n s from t h e o f f s e t s and a r e f e r e n c e

p o i n t
325 # c o r r e c t e d c a r t p o s i t i o n s = p o s i t i o n s f r o m o f f s e t s a d d i t i v e (

c a r t m e a s u r e m e n t s [ 0 ] , c o r r e c t e d o f f s e t s )
326 c o r r e c t e d p o s i t i o n s = p o s i t i o n s f r o m o f f s e t s c o r r e c t i v e ( measurements [ 1 :

l e n ( measurements ) ] , c o r r e c t e d o f f s e t s )
327
328 # Conver t t h e p o s i t i o n s back t o wgs84
329 c o r r e c t e d g p s p o s i t i o n s = g p s t o c a r t e s i a n ( c o r r e c t e d p o s i t i o n s , i n v e r t e d =

True )
330
331 ### OFFSET R e s u l t s ##
332 p r i n t ” Main 319 − p l o t f i r s t d i m − measurements [ : 3 ] ”
333 p l o t f i r s t d i m (
334 measurements [ : 3 ] ,
335 t i t l e = ” Measurements i n WGS84 − Lat / Long / a l t ” ,
336 x l b l = ’X P o s i t i o n ( l a t i t u d e d e g r e e s ) ’ ,
337 y l b l = ’Y P o s i t i o n ( l o n g i t u d e d e g r e e s ) ’ ,
338 f i l e n a m e = o u t p u t d i r + ” measurements . png ” )
339
340 p r i n t ” Main 327 − p l o t f i r s t d i m − c o r r e c t e d p o s i t i o n s ”
341 p l o t f i r s t d i m (
342 c o r r e c t e d p o s i t i o n s ,
343 t i t l e = ” C o r r e c t e d GPS P o i n t s from O f f s e t s ” ,
344 x l b l = ’X P o s i t i o n ( l a t i t u d e d e g r e e s ) ’ ,
345 y l b l = ’Y P o s i t i o n ( l o n g i t u d e d e g r e e s ) ’ ,
346 f i l e n a m e = o u t p u t d i r + ” c o r r e c t e d f r o m o f f . png ” )
347 # f i l e n a m e = o u t p u t d i r + ” f i l t e r e d f r o m o f f . png ”)
348
349 p r i n t ” Main 336 − p l o t f i r s t d i m − f i l t e r e d m e a s u r e m e n t s ”
350 p l o t f i r s t d i m (
351 f i l t e r e d m e a s u r e m e n t s ,
352 t i t l e = ” C o r r e c t e d WGS84 P o i n t s from P o s i t i o n s ” ,
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353 x l b l = ’X P o s i t i o n ( l a t i t u d e d e g r e e s ) ’ ,
356 y l b l = ’Y P o s i t i o n ( l o n g i t u d e d e g r e e s ) ’ ,
357 f i l e n a m e = o u t p u t d i r + ” f i l t e r e d f r o m p o s . png ” )
358
359 p r i n t ” Main 344 − l e n g t h c o r r e c t e d p o s i t i o n s = ” , l e n (

c o r r e c t e d p o s i t i o n s ) , ” l e n g t h measurements = ” , l e n ( measurements )
360 p l o t f i r s t d i m ( c o r r e c t e d p o s i t i o n s , ” f r o m F i l t e r e d O f f s e t −” )
361 p l o t f i r s t d i m ( measurements , ” fromMeasurements−” )
362
363 # S p l i t t h e v a r i a n c e i n t o i t ’ s t h r e e components and draw i t
364
365 # C a l c u l a t e t h e v a r i a n c e be tween t h e two o f f s e t l i s t s
366 o f f s e t v a r i a n c e = c a l c u l a t e p o i n t v a r i a n c e ( measurements [ 1 : ] ,

c o r r e c t e d p o s i t i o n s )
367
368 o f f s e t v a r i a n c e s p l i t = [ [ ] , [ ] , [ ] ]
369 f o r x , y , z in o f f s e t v a r i a n c e :
370 o f f s e t v a r i a n c e s p l i t [ 0 ] . append ( x )
371 o f f s e t v a r i a n c e s p l i t [ 1 ] . append ( y )
372 o f f s e t v a r i a n c e s p l i t [ 2 ] . append ( z )
373
374 p l t . p l o t ( o f f s e t v a r i a n c e s p l i t [ 0 ] )
375 p l t . p l o t ( o f f s e t v a r i a n c e s p l i t [ 1 ] )
376 p l t . p l o t ( o f f s e t v a r i a n c e s p l i t [ 2 ] )
377 p l t . x l a b e l ( ’ Measurement ID ’ )
378 p l t . t i t l e ( ’ V a r i a n c e Between Measurement and F i l t e r e d ( O f f s e t s ) ’ )
379 p l t . y l a b e l ( ’ Measurement o f f s e t v a r i a n c e ’ )
380 # p l t . show ( )
381 p l t . s a v e f i g ( o u t p u t d i r + ” o f f s e t v a r i a n c e . png ” )
382
383 # c a l c u l a t e v a r i a n c e f o r p o s i t i o n s
384 p o s i t i o n v a r i a n c e = c a l c u l a t e p o i n t v a r i a n c e ( measurements ,

f i l t e r e d m e a s u r e m e n t s )
385 p o s i t i o n v a r i a n c e s p l i t = [ [ ] , [ ] , [ ] ]
386 f o r x , y , z in o f f s e t v a r i a n c e :
387 p o s i t i o n v a r i a n c e s p l i t [ 0 ] . append ( x )
388 p o s i t i o n v a r i a n c e s p l i t [ 1 ] . append ( y )
389 p o s i t i o n v a r i a n c e s p l i t [ 2 ] . append ( z )
390
391 p l t . p l o t ( p o s i t i o n v a r i a n c e s p l i t [ 0 ] )
392 p l t . p l o t ( p o s i t i o n v a r i a n c e s p l i t [ 1 ] )
393 p l t . p l o t ( p o s i t i o n v a r i a n c e s p l i t [ 2 ] )
394 p l t . x l a b e l ( ’ Measurement ID ’ )
395 p l t . t i t l e ( ’ V a r i a n c e Between Measurement and F i l t e r e d ( P o s i t i o n s ) ’ )
396 p l t . y l a b e l ( ’ Measurement o f f s e t v a r i a n c e ’ )
397 # p l t . show ( )
398 p l t . s a v e f i g ( o u t p u t d i r + ” p o i n t v a r i a n c e . png ” )
399
400 # o u t p u t c o r r e c t e d f i l e
401
402 f = open ( o u t p u t d i r + ’ g p s t r a i l f i l t e r e d . csv ’ , ’w’ )
403 f . w r i t e ( ’ l a t , lng , a l t \n ’ )
404 i = 0
405 f o r x , y , z in c o r r e c t e d g p s p o s i t i o n s :
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406 i += 1
409 f . w r i t e ( ” {0} , {1} , {2}\n ” . format ( x , y , z ) )
410 i f i % 6 == 0 : # D i s p l a y e v e r y s i x t h e n t r y , p l u s f i r s t and 100 t h
411 p r i n t i , x , y , z
412 c o n t in u e
413 e l i f i == 1 :
414 p r i n t i , x , y , z , ’\n Length o f l i n e = ’ , l e n (

c o r r e c t e d g p s p o s i t i o n s )
415 c o n t in u e
416 e l i f i == 100 :
417 p r i n t i , x , y , z # , ”\n e x t r a f i e l d s = ” , e x t r a f i e l d s # ,

measurements
418 c o n t in u e
419
420 f . c l o s e ( )
421
422 ’ ’ ’
423 ## GPS T r a i l i n p u t and s t a n d a r d Kalman f i l t e r smoo th ing . . .
424 ##
425 ## End <p y k a l 5 . py>
426 ’ ’ ’
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Weka Random Forest
=== Run information ===

Scheme: weka.classifiers.trees.RandomForest -I 100 -K 0 -S 1 -num-slots 1

Relation: DSRC_ALL_FIELDS

Instances: 4920

Attributes: 19

utc_time

lat

lng

gps_speed

CAN_SPEED

AccelPedalPosition

AmbientTemp

BrakeSwitch

BrkSw2Stat

ESP_BrakeSwitch

BrkSwOnStat

YawRate

SteeringWheel_Angle

Odometer

BATT_VOLT

LAT_ACCEL

EngineSpeed

alt

Altitude-nominal

Test mode: split 66.0% train, remainder test

=== Classifier model (full training set) ===

Random forest of 100 trees, each constructed while considering 5 random features.

Out of bag error: 0.1381

Time taken to build model: 1.62 seconds

=== Evaluation on test split ===

Time taken to test model on training split: 0.09 seconds

=== Summary ===
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Correlation coefficient 0.9988

Mean absolute error 0.1568

Root mean squared error 0.5056

Relative absolute error 2.3326 %

Root relative squared error 5.1409 %

Total Number of Instances 1673
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Arada OBU Data Fields

ARADA OBU Data Fields - highlighted fields denote duplicates

utc time lat lng
alt YawRate speed
VEH SPEED AccelPedalPosition BrakeSwitch
FrontWiperInUse ESP Lamp Req BrkEnbl LCM
FullBrk Actv AccelPedalPosition ABS Lamp Req
SteeringWheel Angle ETC LmpFlash ESP TrqRqEnabl
ESP PD EN Odometer REF VEH SPEED
BarometricPressure ABS BrkEvt EngineSpeed
ESP AVL BRK ACT LCM ABS PRSNT
BRK ACTIVE BrkSw2Stat HighBeams
ESP PRSNT BarometricPressure ESP TrqRqEnabl
ESP PD EN FullBrk Actv1 TSC SUPP
ESP AVL PARK BRK EGD ESP BrakeSwitch
TSC SUPP PrkBrake Indicator BRK ACT LCM
AmbientTemp VEH SPEED BrakeSwitch
FullBrk Actv1 REF VEH SPEED LowBeam
ETC LmpOn BRK ACTIVE TSC EN
utc time lat ESP Disabled
PrkBrake Indicator ABS PRSNT BrkSw2Stat
ESP PD SUPP LAT ACCEL FrontWiperInUse
ESP Disabled ESP Lamp Req ESP BrakeSwitch
ETC LmpOn BrkEnbl LCM lat
FullBrk Actv AccelPedalPosition TSC EN
ABS Lamp Req ETC LmpFlash BrkSw1Stat
YawRate SteeringWheel Angle Odometer
BATT VOLT ESP PD SUPP PARK BRK EGD
BATT VOLT ABS BrkEvt LAT ACCEL
EngineSpeed BrkSw1Stat ESP PRSNT

Table C.9: Arada OBU Data Fields
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Colophon

This thesis was typeset using Leslie Lamport’s
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\documentclass[oneside,12pt,letterpaper]{book}
using a single sided, double spaced environ-
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binding.

Tables (and pseudocode) were shown using Com-

puter Modern Sans Serif adjusted to various point

sizes to suit the contents. The CMSS font is effec-
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